Hello

Welcome lekule blog

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation.
together in the world. #lekule86
Join us on

LVDS: High-Speed, Low-Power, Robust Data Transfer

Typical 3.3 V or 5 V logic signals are generally adequate for short-distance chip-to-chip (i.e., intraboard) communication, even with clock frequencies in the megahertz range. A well-designed PCB can be considered a fairly protected environment, where digital signals are not likely to experience severe degradation due to noise or parasitic reactance.

But the situation changes when digital data, especially high-speed data, leaves this protected environment—e.g., when it must travel to a separate portion of the system through long cables or intense EMI. Even intraboard communication can become problematic when strong noise sources are present or when very high data rates (e.g., in the hundreds of megabits per second) are required.

From One Wire to Two Wires

The general remedy in such cases is to move from single-ended logic to differential signaling. RS-422/485 is an excellent interface, but it is not optimized for high speed. Other options include current-mode logic (CML) and low-voltage positive emitter-coupled logic (LVPECL). But, in my experience, a more common choice is low-voltage differential signaling (LVDS).
LVDS is a standardized interface for high-speed, point-to-point digital communication. “Point-to-point” means one transmitter and one receiver; LVDS is not intended for facilitating communication between numerous devices in a system, but rather for rapidly and efficiently moving large amounts of data from one device to another.

The Signals

LVDS uses (you guessed it!) low-voltage-swing, differential signals, as follows:



The nominal common-mode voltage is 1.2 V, and the nominal voltage range for each signal in the differential pair is 150 mV above to 150 mV below the common-mode voltage. This means that each signal’s voltage is changing by only 300 mV—about an order of magnitude lower than the voltage swing of a single-ended 3.3 V logic signal.
Despite the small voltage difference between logic low and logic high, the benefits of differential signaling (in conjunction with twisted wires and shielded cables) allow LVDS to provide highly reliable communication.

Low-Voltage Benefits

Far from being merely a data-integrity concern, low-voltage-swing signaling saves power and increases speed:
  • Less voltage across the termination resistors reduces current, and lower supply voltages in general reduce power consumption (remember, CMOS power dissipation is proportional to VDD squared).
  • Voltage transitions cannot occur instantaneously; it takes time for a signal to move from one voltage to another, so less distance between logic low and logic high enables higher-frequency operation by reducing the time required for each logic transition.

 

Not Out of Reach

LVDS is a high-performance standard that can achieve data rates approaching, or maybe even exceeding, 1 gigabit per second (though speed must be reduced as cable length increases). But don’t be intimidated—an abundance of user-friendly integrated circuits makes LVDS a very approachable interface. It is not difficult to translate from standard logic to LVDS and back to standard logic using readily available LVDS drivers and receivers, and termination is straightforward:



LVDS can be particularly valuable when the device providing the to-be-translated signals (such as a microcontroller) is too slow to generate serial data at the desired frequency. In such cases you can use an LVDS serializer in conjunction with an LVDS deserializer—the former converts parallel standard-logic inputs to serial LVDS outputs, and the latter converts the serial LVDS data back into parallel standard-logic signals (this datasheet for a serializer/deserializer pair gives you an example of what I’m referring to).

 

Recap


LVDS offers high speed and low power, as well as convenient IC-based implementation. It’s a great alternative to single-ended logic when you need robust, high-bandwidth, point-to-point data transfer.

Share this:

ABOUTME

Hi all. This is deepak from Bthemez. We're providing content for Bold site and we’ve been in internet, social media and affiliate for too long time and its my profession. We are web designer & developer living India! What can I say, we are the best..

Post a Comment
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.

Labels

LEKULE TV EDITORIALS ARTICLES DC ROBOTICS DIGITAL SEMICONDUCTORS GENERATOR AC EXPERIMENTS MANUFACTURING-ENGINEERING REFERENCE FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT TRANSDUCER & SENSOR VIDEO ARDUINO RENEWABLE ENERGY AUTOMOBILE TEARDOWN SYNCHRONOUS GENERATOR DIGITAL ELECTRONICS ELECTRICAL DISTRIBUTION CABLES AUTOMOTIVE MICROCONTROLLER SOLAR PROTECTION DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES WEARABLES CAMERA TECHNOLOGY COMMUNICATION GENERATION BATTERIES FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE CONTROL SYSTEM NUCLEAR ENERGY SMATRPHONE FILTER`S POWER BIOGAS BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS ENERGY SOURCE PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD BLUETOOTH C PROGRAMMING HOME AUTOMATION HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY COMPUTER DEFECE & MILITARY FLUORESCENT LAMP INDUSTRIAL ROBOTICS ANDROID ELECTRICAL DRIVES GROUNDING SYSTEM CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS USB ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS CONTROL MOTION ELECTRICAL LAWS INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES APPS & SOFTWARE BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RECTIFIER AND CONVERTERS RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS DC MOTOR DRIVES ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS WIRELESS BUILDING SERVICES COMPRESSOR CRANES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION INDUSTRIAL DRIVES LAPTOP SCIENCE THERMOCOUPLE TRIGONOMENTRY REFERENCE UART oscilloscope BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING ELECTROMECHANICAL FEATURED FILTER DESIGN HARDWARE JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER VALVE COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF