Hello

Welcome lekule blog

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation.
together in the world. #lekule86
Join us on

The End of the Age of MOSFETs? Carbon Nanotubes Finally Outperform Silicon in Transistors

For the first time ever, a material other than silicon has managed to boast the top performance specs in the field of transistors. Carbon nanotube transistors (CNTs) could finally take over as reigning champion in transistor production.

Advances in semiconductor devices have consistently been improving our technological limits by reducing device proportions for the past few decades. The current graphene and silicon chips have nearly reached optimization. Due to their technological and scientific limitations, we have been forced to explore new and better material alternatives.

Over 20 years ago it was suggested that carbon nanotubes would be the answer to creating chips with smaller dimensions due to their electrical conductivity. However, this idea had been tossed aside for decades due to the discrepancies and deviations that arose between metallic and semiconducting single-walled carbon nanotubes in addition to problems concerning wafer alignment.


Rendering of a single-walled carbon nanotube. Image sourced from Wikimedia Commons.

But material engineers at the University Wisconsin-Madison have created a transistor made from carbon nanotubes (CNTs) that has managed to outperform the latest silicon transistor models.

UW-Madison's CNT Transistor

The team was led by two professors of materials and engineering Padma Gopalan and Michael Arnold. The UW-Madison team was able to produce a transistor with a current 1.9 times quicker than current silicon transistors. The speed at which a current can transit from a transistor’s source and drain terminals regulates the speed at which a circuit can operate. Faster currents enable devices in circuits to be charged faster.

In their research published in the journal Science Advances the team explains the difficulties and production processes involved in creating the new CNT transistors. The team was able to pinpoint distinguishing processes that enable specific polymers to sort the single-walled carbon nanotubes to produce an immaculately pure solution.

Specific conditions were established that enabled the removal of nearly all (to .01%) of the metallic. A process called floating evaporative self-assembly (or FESA) was developed by the team back in 2014 and was used to deposit arrays of aligned semiconducting single-walled carbon nanotubes at high deposition velocity with exemplary control of placement and quantity.
As of now, the team has been able to manufacture this process on a 1x1 inch scaled wafer.


Image courtesy of the University of Wisconsin-Madison

The UW-Madison team benchmarked the performance of their CNT arrays compared to state-of-the-art single CNT FETs and to commercial metal oxide silicon FETs with the same geometry, size, and leakage current. The result is that the CNT arrays produced current 1.9 times higher than the oxide silicon MOSFETs.

Using the data from single CNT assessment, the researchers hypothesized that the new transistor will be capable of functioning five times faster with potential to become five times more efficient than current silicon transistors.


The layout of a typical MOSFET. Image courtesy of Oxford University.

The Future of Transistor Technology

The advancements in their research could potentially lead the CNT transistors to succeed the use of silicon transistors while continuing to abide by the old notion of Moore's Law. These transistors are particularly useful in wireless communication and computer chips among various other fields as they demand large current flows through their circuitry, which is exactly what the new CNT transistors provide.

The team is still continuing their research, currently adapting the size and shape of the CNTs to match their silicon counterparts, which change geometry regularly. They are also in the midst of developing RF amplifiers to boost signal strength.

The CNT technology is approaching the level of development where research will be aimed at advancing the performance in potential devices. The work is currently patented and is receiving funding from the NSF and several military branches.

Michael Arnold has been quoted as saying that this is “a critical advance toward exploiting carbon nanotubes in logic, high-speed communications, and other semiconductor electronics technologies.” According to him, CNTs finally outpacing silicon has been a major goal for nanotechnology for 20 years.

To learn more, check out this video of the researchers going over their invention:



Share this:

ABOUTME

Hi all. This is deepak from Bthemez. We're providing content for Bold site and we’ve been in internet, social media and affiliate for too long time and its my profession. We are web designer & developer living India! What can I say, we are the best..

Post a Comment
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.

Labels

LEKULE TV EDITORIALS ARTICLES DC ROBOTICS DIGITAL SEMICONDUCTORS GENERATOR AC EXPERIMENTS MANUFACTURING-ENGINEERING REFERENCE FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT TRANSDUCER & SENSOR VIDEO ARDUINO RENEWABLE ENERGY AUTOMOBILE TEARDOWN SYNCHRONOUS GENERATOR DIGITAL ELECTRONICS ELECTRICAL DISTRIBUTION CABLES AUTOMOTIVE MICROCONTROLLER SOLAR PROTECTION DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES WEARABLES CAMERA TECHNOLOGY COMMUNICATION GENERATION BATTERIES FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE CONTROL SYSTEM NUCLEAR ENERGY SMATRPHONE FILTER`S POWER BIOGAS BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS ENERGY SOURCE PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD BLUETOOTH C PROGRAMMING HOME AUTOMATION HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY COMPUTER DEFECE & MILITARY FLUORESCENT LAMP INDUSTRIAL ROBOTICS ANDROID ELECTRICAL DRIVES GROUNDING SYSTEM CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS USB ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS CONTROL MOTION ELECTRICAL LAWS INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES APPS & SOFTWARE BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RECTIFIER AND CONVERTERS RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS DC MOTOR DRIVES ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS WIRELESS BUILDING SERVICES COMPRESSOR CRANES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION INDUSTRIAL DRIVES LAPTOP SCIENCE THERMOCOUPLE TRIGONOMENTRY REFERENCE UART oscilloscope BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING ELECTROMECHANICAL FEATURED FILTER DESIGN HARDWARE JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER VALVE COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF