Hello

Welcome lekule blog

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation.
together in the world. #lekule86
Join us on

How LASER Beam Welding Works | LASER Beam Welding Process

Laser Beam Welding setup:
Laser beam welding is a welding process that uses a laser beam to melt and vaporize material. A ruby laser rod is used for machining process. Here the lasing material is in the form of a solid ruby rod (doped with chromium) with the end faces made parallel to each other within (1 / 20) of the wavelength. One end of the rod is made totally reflective while the other end is partially reflective (about 80 percent). A number of Xenon flash lamps are placed around the laser rod for pumping it into the excited state. A highly reflective cylindrical enclosure surrounds both the rod and the flash lamps to restrict the light from the pumps into the rod.


01-laser technology - ruby laser rod


Principles of Laser action:


The action of the laser is based on the following well known principle. “if an atom or molecule of the lasing material is raised to energy level E2 by an outside source like light, heat or chemical reaction it does not permanently remain at that state. Sooner or later it decays back to its stable lower energy level E1 releasing a photon of light”.
01-ruby-rod-laser
Designing a LASER:


A LASER requires three components. They are:

1. An active medium like ruby LASER rod

2. A pumping medium (3 energy levels)

3. A resonant cavity like Xenon flash lamp


01-ruby-rod-laser-excitation



Increasing the LASER power:



The frequency of the emitted light depends upon the difference in energy levels E2 – E1 and the Planck’s constant. If the photon of light so released comes into contact with another atom or molecule that has been similarly raised to the higher energy level, second atom or molecule is triggered to return to its stable energy level E1 releasing another photon of light.


The two photons so generated are identical in wave length, phase, direction and energy. This sequence of triggering is multiplied many fold to produce the laser beam. When the ruby crystal consisting of aluminium oxide into which 0.05 percent chromium has been introduced, is pumped into the excited state by the series of Xenon flash bulbs surrounding it, the chromium atoms are raised to the higher energy level, releasing a stream of photons, when they fall back to their stable lower energy level.


When this light is reflected from the end mirrors it triggers more atoms to their ground state leading to chain reaction of stimulated radiation. Some of this light escaping from the partially reflecting mirror on the right constitutes the laser. Because of lasers highly monochromatic nature this light can be easily focussed and concentrated with a lens to a very small diameter spot with a much higher intensity.


The large number of lasers that have been developed for welding generally fall into two main categories solid state lasers and gas lasers. Solid state lasers like ruby laser use solid crystal as lasering medium and are excited by Xenon or Krypton filled flash lamps. The output from these lasers is normally in pulses. The power rating of such units may be up to 2 KW. Gas lasers on the other hand use a glass tube through which a mixture of carbon dioxide, Helium or Nitrogen gas is flowing. Direct electrical energy is used with gas lasers for excitation. The gas flowing through the laser may be recirculated in some cases to reduce cost. Continuous wave gas lasers using carbon dioxide gas with power up to 20 KW are used for laser beam welding.


Welding is done with high power lasers with longer pulses so that metal can be heated to its melting point without vaporization. It may be done by conduction or by penetration. Conductive welding is carried out with the help of conductive heating of the joint and is limited to low depth welds. It uses low power intensity beams. Penetration will not be much and weld is obtained by welding of joint near the surface. As the power is increased the higher heat density obtained will cause the metal at the centre of the laser jet to be vaporized with a key hole being formed.
After the laser beam has passed, the molten metal channel collapses forming a weld nugget. This method can produce single pass welds up to 19 mm deep with much less cost compared to conventional welding methods like resistance welding.


Laser Beam Welding Application:


01-laser-beam-machining-applications
Laser beam welding can be used for welding of corrosion resistant steels and titanium alloys requiring high quality welds. Currently it is finding wide use in communication engineering application where very fine wires are required to be welded and on micro circuit boards etc. The process is also useful for welding of different combinations of metal as well for welding of transparent materials.

Share this:

ABOUTME

Hi all. This is deepak from Bthemez. We're providing content for Bold site and we’ve been in internet, social media and affiliate for too long time and its my profession. We are web designer & developer living India! What can I say, we are the best..

Post a Comment
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.

Labels

LEKULE TV EDITORIALS ARTICLES DC ROBOTICS DIGITAL SEMICONDUCTORS GENERATOR AC EXPERIMENTS MANUFACTURING-ENGINEERING REFERENCE FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT TRANSDUCER & SENSOR VIDEO ARDUINO RENEWABLE ENERGY AUTOMOBILE TEARDOWN SYNCHRONOUS GENERATOR DIGITAL ELECTRONICS ELECTRICAL DISTRIBUTION CABLES AUTOMOTIVE MICROCONTROLLER SOLAR PROTECTION DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES WEARABLES CAMERA TECHNOLOGY COMMUNICATION GENERATION BATTERIES FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE CONTROL SYSTEM NUCLEAR ENERGY SMATRPHONE FILTER`S POWER BIOGAS BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS ENERGY SOURCE PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD BLUETOOTH C PROGRAMMING HOME AUTOMATION HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY COMPUTER DEFECE & MILITARY FLUORESCENT LAMP INDUSTRIAL ROBOTICS ANDROID ELECTRICAL DRIVES GROUNDING SYSTEM CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS USB ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS CONTROL MOTION ELECTRICAL LAWS INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES APPS & SOFTWARE BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RECTIFIER AND CONVERTERS RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS DC MOTOR DRIVES ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS WIRELESS BUILDING SERVICES COMPRESSOR CRANES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION INDUSTRIAL DRIVES LAPTOP SCIENCE THERMOCOUPLE TRIGONOMENTRY REFERENCE UART oscilloscope BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING ELECTROMECHANICAL FEATURED FILTER DESIGN HARDWARE JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER VALVE COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF