Understanding Complex-Conjugate Poles in Filter Theory

This technical brief explains the importance of complex-conjugate poles and second-order stages in optimizing filter performance.

There are two ways to achieve second-order (i.e., two-pole) filter response: cascade two first-order filters, or use a second-order topology. An example of the former is two resistor–capacitor (RC) low-pass filters connected in series, with the output of the first buffered by a voltage follower. Examples of the latter are passive resistor–capacitor–inductor (RLC) filters and active filters, such as the Sallen­–Key.
Of course, this discussion applies also to higher-order filters: a four-pole response can be provided by four cascaded first-order stages or two cascaded second-order stages.
There is an appealing simplicity surrounding the cascade-first-order-stages approach. All you need for a second-order filter is some rudimentary math, an op-amp, two resistors, and two capacitors (three if you include the op-amp’s bypass cap). Why so much ado about second-order topologies, then? Well, the answer to that question leads to an important concept in filter theory: complex-conjugate poles.
Recall that complex conjugates have real parts that are equal in magnitude and sign and imaginary parts that are equal in magnitude and opposite in sign. Let’s visualize this using the s-plane:



Here we have complex-conjugate poles on the left side of the imaginary axis (which is where you want the poles, unless you’re designing an oscillator instead of a filter). They have equal distance from the real axis and the imaginary axis, but they are mirrored across the real axis because one has a positive imaginary part and one has a negative imaginary part.

Complex-conjugate poles are important because they allow the designer to optimize a filter such that it exhibits a maximally flat passband, a rapid transition from passband to stopband, or constant group delay (i.e., linear phase response). The problem with cascaded first-order stages is that this configuration cannot provide complex-conjugate poles.

Let’s explore this fact using a unity-gain low-pass filter as an example. The s-domain transfer function is

$$H(s)=\frac{1}{s+\omega_0}$$

Cascading two of these filters corresponds to multiplying the two transfer functions:

$$H(s)=\frac{1}{s+\omega_0}\times\frac{1}{s+\omega_0}=\frac{1}{s^2+2\omega_0 s+\omega_0^2}$$

The term we are interested in here is the 2ω0s. The denominator of a generalized second-order transfer function can be written as

$$s^2+\frac{\omega_0}{Q} s+\omega_0^2$$

Thus, we have

$$\frac{\omega_0}{Q}=2\omega_0 \ \Rightarrow \ Q = 0.5$$

The first thing to notice here is that the Q factor cannot be adjusted so as to fine-tune the frequency response. Two cascaded first-order filters will always have Q = 0.5 (furthermore, Q = 0.5 corresponds to a rather gradual transition from passband to stopband and significant attenuation in the passband).
The second thing to understand is that you cannot have complex-conjugate poles when Q is 0.5. Consider the following diagram:



The distance from the imaginary axis to a pole is equal to ω0/2Q, and the distance from the origin to a pole is ω00 is the pole frequency). If Q = 0.5, we have ω0/(2 × 0.5) = ω0, and thus the distance from the imaginary axis will be equal to the distance from the origin. It follows that the pole must be located on the real axis, and consequently there is no possibility for a complex-conjugate pair because the pole location has no imaginary part.


Perhaps we can intuitively conclude from the circuit implementation that cascaded-first-order-stage filters do not allow for optimization. But it is helpful to recognize that this rigidity is bound to the absence of complex-conjugate poles, which can be produced using a true second-order stage and which enable the designer to optimize a filter for a particular application.
Previous
Next Post »
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.
Related Posts Plugin for WordPress, Blogger...

Label

KITAIFA NEWS KIMATAIFA MICHEZO BURUDANI SIASA TECHNICAL ARTICLES f HAPA KAZI TU. LEKULE TV EDITORIALS ARTICLES DC DIGITAL ROBOTICS SEMICONDUCTORS MAKALA GENERATOR GALLERY AC EXPERIMENTS MANUFACTURING-ENGINEERING MAGAZETI REFERENCE IOT FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT VIDEO ZANZIBAR YETU TRANSDUCER & SENSOR MITINDO ARDUINO RENEWABLE ENERGY AUTOMOBILE SYNCHRONOUS GENERATOR ELECTRICAL DISTRIBUTION CABLES DIGITAL ELECTRONICS AUTOMOTIVE PROTECTION SOLAR TEARDOWN DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS MICROCONTROLLER CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES CAMERA TECHNOLOGY GENERATION WEARABLES BATTERIES COMMUNICATION FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE NUCLEAR ENERGY CONTROL SYSTEM FILTER`S SMATRPHONE BIOGAS POWER TANZIA BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT cartoon CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP ENERGY SOURCE FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY DEFECE & MILITARY FLUORESCENT LAMP HOME AUTOMATION INDUSTRIAL ROBOTICS ANDROID COMPUTER ELECTRICAL DRIVES GROUNDING SYSTEM BLUETOOTH CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR USB AUDIO BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS ELECTRICAL LAWS HMI[HUMANI INTERFACE MACHINES INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS CONTROL MOTION ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS APPS & SOFTWARE BASIC AC THEORY BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE RECTIFIER AND CONVERTERS SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS BUILDING SERVICES COMPRESSOR CRANES DC MOTOR DRIVES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION LAPTOP THERMOCOUPLE TRIGONOMENTRY REFERENCE UART WIRELESS BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING FILTER DESIGN HARDWARE INDUSTRIAL DRIVES JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER SCIENCE VALVE WWE oscilloscope 3D TECHNOLOGIES COLOR CODES ELECTRIC TRACTION FEATURED FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER MATERIAL PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF