Interfacing a Load Cell With an Arduino Board

General Specifications

Over the years, many RobotShop customers have asked us about the easiest way to interface a load cell with an Arduino board so they can get accurate weight measurements. Instruments like load cells provide small signal values and need to be amplified for processing, so without additional electronics, these sensors cannot and should not be connected directly to an Arduino’s I/O pins. Arduino boards like the UNO have a 10 bit ADC, which means that the resolution of the analog input pins are 5V/1024 ≈ 4.9mV. For this reason, variations less than 4.9mV will not be recognized by the Arduino board without the appropriate amplification and filtering. The two common approaches for interfacing a load cell with an Arduino are :

  • Amplifying the load cell’s output voltage signal (using a pre-packaged instrumentation amplifier IC like the INA125 to be processed by the Arduino’s ADC).

  • Using a High-resolution ADC which can be interfaced with the Arduino.

Luckily, there is a new option for those seeking a plug and play solution to avoid extra wiring and coding: the Strain Gauge / Load Cell Amplifier Shield. This board makes interfacing an Arduino and an instrumentation amplifier significantly easier. This stackable shield can be used with various low output sensors like load cells. It’s a low cost solution for precise amplification of measurements especially for robotics, multichannel systems, medical instrumentation, industrial process control and more.

The Load Cell Shield features an AD8426 dual channel Instrumentation amplifier. The gain produced by the AD8426 amplifier ranges from 1 to 1000 depending on the GAIN resistor value. The output voltage reference of each channel can be adjusted with the two onboard potentiometers. The shield has also a low-pass 2nd order Bessel filter at 1000Hz for both channels.
strain gauge load cell shield
Strain Gauge / Load Cell Shield

Setup and Wiring

A load cell usually has 4 wires, but it’s important to check the wiring for the unit you have:
  • Red Wire: Excitation +
  • Black Wire: Excitation –
  • Green Wire: Signal +
  • White Wire: Signal –
5 kg micro load cell
5 kg Micro Load Cell


The parts needed for connecting the load cell to the shield :

  • Load Cell Amplifier Shield

  • Load Cell

  • Arduino Board

  • 4 x 0.1″ Spaced F/F Jumper Wires (Stripped at one end)

  • Heat shrink (Optional)

  • Soldering Iron

parts needed
Parts Needed

Solder the F/F jumper wires to the Load Cell wires. To avoid mixing the wires when connecting the load cell, you can choose the same color wires as those of the load cell :
sodering load cell with jumper wires
Soldering

Add heat shrink over the soldered areas:
putting heat shrink
Heat Shrink

Connect the load cell to the Load Cell Amplifier Shield:
connecting load cell to the shield
Connecting the Load cell

Stack the Load Cell Amplifier Shield on top of the Arduino board (in our case, a Lynxmotion BotBoarduino):

stacking the load cell amplifier shield to the arduino board
Stacking the Load Cell Shield

The Load Cell Shield uses analog pins A0 and A1 for Strain 1 and Strain 2 inputs respectively. The white connectors on the board are 4 pin Molex connectors with 0.1″ spacing. There are two modifications per channel that can be done to adjust the output voltage of the shield described below:

Gain

The gain of the amplification per channel is dependent on the Gain1 / Gain2 resistors. The AD8426 default gain is 1 without a gain resistor. The standard gain resistor value of the shield is 100 Ohm (for each channel) for a gain of 495. These resistors can be replaced depending on the user’s application with the appropriate ones. The gain can be calculated by using the following gain equation (from AD8426 datasheet) : Rgain= 49400/(Gain-1)
strain gauge load cell amplifier shield gain
Amplifier Gain Resistor

Reference voltage

The reference voltage feature is used to offset the output signal to a mid-supply voltage to be used with a single power supply ADC. The reference voltage can be set using the onboard potentiometers associated with each channel.
strain gauge load cell amplifier shield gain reference voltage
Channel 1 and 2 Reference Voltage

Arduino Sample Code


This Arduino Sample Code reads analog pin 0 (Strain 1) and analog pin 1 (Strain 2) so that the load cells can be calibrated by linear interpolation.
Previous
Next Post »
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.
Related Posts Plugin for WordPress, Blogger...

Label

KITAIFA NEWS KIMATAIFA MICHEZO BURUDANI SIASA TECHNICAL ARTICLES f HAPA KAZI TU. LEKULE TV EDITORIALS ARTICLES DC DIGITAL ROBOTICS SEMICONDUCTORS MAKALA GENERATOR GALLERY AC EXPERIMENTS MANUFACTURING-ENGINEERING MAGAZETI REFERENCE IOT FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT VIDEO ZANZIBAR YETU TRANSDUCER & SENSOR MITINDO ARDUINO RENEWABLE ENERGY AUTOMOBILE SYNCHRONOUS GENERATOR ELECTRICAL DISTRIBUTION CABLES DIGITAL ELECTRONICS AUTOMOTIVE PROTECTION SOLAR TEARDOWN DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS MICROCONTROLLER CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES CAMERA TECHNOLOGY GENERATION WEARABLES BATTERIES COMMUNICATION FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE NUCLEAR ENERGY CONTROL SYSTEM FILTER`S SMATRPHONE BIOGAS POWER TANZIA BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT cartoon CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP ENERGY SOURCE FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY DEFECE & MILITARY FLUORESCENT LAMP HOME AUTOMATION INDUSTRIAL ROBOTICS ANDROID COMPUTER ELECTRICAL DRIVES GROUNDING SYSTEM BLUETOOTH CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR USB AUDIO BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS ELECTRICAL LAWS HMI[HUMANI INTERFACE MACHINES INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS CONTROL MOTION ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS APPS & SOFTWARE BASIC AC THEORY BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE RECTIFIER AND CONVERTERS SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS BUILDING SERVICES COMPRESSOR CRANES DC MOTOR DRIVES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION LAPTOP THERMOCOUPLE TRIGONOMENTRY REFERENCE UART WIRELESS BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING FILTER DESIGN HARDWARE INDUSTRIAL DRIVES JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER SCIENCE VALVE WWE oscilloscope 3D TECHNOLOGIES COLOR CODES ELECTRIC TRACTION FEATURED FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER MATERIAL PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF