Hello

Welcome lekule blog

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation.
together in the world. #lekule86
Join us on

Interfacing a Load Cell With an Arduino Board

General Specifications

Over the years, many RobotShop customers have asked us about the easiest way to interface a load cell with an Arduino board so they can get accurate weight measurements. Instruments like load cells provide small signal values and need to be amplified for processing, so without additional electronics, these sensors cannot and should not be connected directly to an Arduino’s I/O pins. Arduino boards like the UNO have a 10 bit ADC, which means that the resolution of the analog input pins are 5V/1024 ≈ 4.9mV. For this reason, variations less than 4.9mV will not be recognized by the Arduino board without the appropriate amplification and filtering. The two common approaches for interfacing a load cell with an Arduino are :

  • Amplifying the load cell’s output voltage signal (using a pre-packaged instrumentation amplifier IC like the INA125 to be processed by the Arduino’s ADC).

  • Using a High-resolution ADC which can be interfaced with the Arduino.

Luckily, there is a new option for those seeking a plug and play solution to avoid extra wiring and coding: the Strain Gauge / Load Cell Amplifier Shield. This board makes interfacing an Arduino and an instrumentation amplifier significantly easier. This stackable shield can be used with various low output sensors like load cells. It’s a low cost solution for precise amplification of measurements especially for robotics, multichannel systems, medical instrumentation, industrial process control and more.

The Load Cell Shield features an AD8426 dual channel Instrumentation amplifier. The gain produced by the AD8426 amplifier ranges from 1 to 1000 depending on the GAIN resistor value. The output voltage reference of each channel can be adjusted with the two onboard potentiometers. The shield has also a low-pass 2nd order Bessel filter at 1000Hz for both channels.
strain gauge load cell shield
Strain Gauge / Load Cell Shield

Setup and Wiring

A load cell usually has 4 wires, but it’s important to check the wiring for the unit you have:
  • Red Wire: Excitation +
  • Black Wire: Excitation –
  • Green Wire: Signal +
  • White Wire: Signal –
5 kg micro load cell
5 kg Micro Load Cell


The parts needed for connecting the load cell to the shield :

  • Load Cell Amplifier Shield

  • Load Cell

  • Arduino Board

  • 4 x 0.1″ Spaced F/F Jumper Wires (Stripped at one end)

  • Heat shrink (Optional)

  • Soldering Iron

parts needed
Parts Needed

Solder the F/F jumper wires to the Load Cell wires. To avoid mixing the wires when connecting the load cell, you can choose the same color wires as those of the load cell :
sodering load cell with jumper wires
Soldering

Add heat shrink over the soldered areas:
putting heat shrink
Heat Shrink

Connect the load cell to the Load Cell Amplifier Shield:
connecting load cell to the shield
Connecting the Load cell

Stack the Load Cell Amplifier Shield on top of the Arduino board (in our case, a Lynxmotion BotBoarduino):

stacking the load cell amplifier shield to the arduino board
Stacking the Load Cell Shield

The Load Cell Shield uses analog pins A0 and A1 for Strain 1 and Strain 2 inputs respectively. The white connectors on the board are 4 pin Molex connectors with 0.1″ spacing. There are two modifications per channel that can be done to adjust the output voltage of the shield described below:

Gain

The gain of the amplification per channel is dependent on the Gain1 / Gain2 resistors. The AD8426 default gain is 1 without a gain resistor. The standard gain resistor value of the shield is 100 Ohm (for each channel) for a gain of 495. These resistors can be replaced depending on the user’s application with the appropriate ones. The gain can be calculated by using the following gain equation (from AD8426 datasheet) : Rgain= 49400/(Gain-1)
strain gauge load cell amplifier shield gain
Amplifier Gain Resistor

Reference voltage

The reference voltage feature is used to offset the output signal to a mid-supply voltage to be used with a single power supply ADC. The reference voltage can be set using the onboard potentiometers associated with each channel.
strain gauge load cell amplifier shield gain reference voltage
Channel 1 and 2 Reference Voltage

Arduino Sample Code


This Arduino Sample Code reads analog pin 0 (Strain 1) and analog pin 1 (Strain 2) so that the load cells can be calibrated by linear interpolation.

Share this:

ABOUTME

Hi all. This is deepak from Bthemez. We're providing content for Bold site and we’ve been in internet, social media and affiliate for too long time and its my profession. We are web designer & developer living India! What can I say, we are the best..

Post a Comment
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.

Labels

LEKULE TV EDITORIALS ARTICLES DC ROBOTICS DIGITAL SEMICONDUCTORS GENERATOR AC EXPERIMENTS MANUFACTURING-ENGINEERING REFERENCE FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT TRANSDUCER & SENSOR VIDEO ARDUINO RENEWABLE ENERGY AUTOMOBILE TEARDOWN SYNCHRONOUS GENERATOR DIGITAL ELECTRONICS ELECTRICAL DISTRIBUTION CABLES AUTOMOTIVE MICROCONTROLLER SOLAR PROTECTION DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES WEARABLES CAMERA TECHNOLOGY COMMUNICATION GENERATION BATTERIES FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE CONTROL SYSTEM NUCLEAR ENERGY SMATRPHONE FILTER`S POWER BIOGAS BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS ENERGY SOURCE PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD BLUETOOTH C PROGRAMMING HOME AUTOMATION HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY COMPUTER DEFECE & MILITARY FLUORESCENT LAMP INDUSTRIAL ROBOTICS ANDROID ELECTRICAL DRIVES GROUNDING SYSTEM CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS USB ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS CONTROL MOTION ELECTRICAL LAWS INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES APPS & SOFTWARE BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RECTIFIER AND CONVERTERS RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS DC MOTOR DRIVES ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS WIRELESS BUILDING SERVICES COMPRESSOR CRANES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION INDUSTRIAL DRIVES LAPTOP SCIENCE THERMOCOUPLE TRIGONOMENTRY REFERENCE UART oscilloscope BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING ELECTROMECHANICAL FEATURED FILTER DESIGN HARDWARE JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER VALVE COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF