Hello

Welcome lekule blog

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation.
together in the world. #lekule86
Join us on

Lesson 68 - The Flip Flop

Now that you understand AND, NOT, NOR, and NAND gates, and can recognize them in both their discrete and block diagram forms, it is time to get complicated. No more hand holding. We are going to study - the Flip FLop. Contrary to populary opinion, a Flip Flop is NOT a shoe. That shoe would be called a Thong. A Flip Flop is an electronic circuit that flips to a one, then flops to a zero, then flips back to a one, and so forth.

I gave actual part numbers and values so that if you wanted to, you could build this circuit yourself and watch the magic at work. You can build it out on a breadboard, or make a printed circuit board if you feel comfortable doing so. Either way - this is how the circuit works:

With 9V applied via the battery, one of the transistors will conduct (going high), which causes the other transister to remain off (going low). Which one turns on is somewhat random, as the circuit is symetrical. Again - this is a complicated circuit. You are going to have to slow down, and think through the movement of current through each individual part - our you'll get lost here.

For the sake of discussion, let us assume that Q1 is turned on. As Q1 turns on, current flows through R1, D1, and Q1. With current flowing through D1, it lights up, and we find we have a high on R2. Knowing that transistors act like NOT gates - if we have a High on R2 (input to Q2), you will have a LOW on Q2's output. If we push S1, it shorts the emitter-base connection of Q1, causing it to turn off. With Q1 turned off, we lose current flow through Q1 and D1 goes dark. R2 goes low.

Now that R2 is low, we have a low on the input of the NOT gate Q2, which causes the collector voltage to rise, turning Q2 on, and causing D2 to light up. Which ever transistor is on can be turned off by simply grounding it's base through the push button, and we can continue the cycle turning one transistor on after the other.

Note that this circuit looks very complicated. Again - in order to simplify things, we use BLOCK diagrams instead of schematic. Block logic diagrams, like the one on the right, are easier to follow, as they do not include every small component, and you don't have to think about the function and purpose of each component, only of the overall function of the circuit. If you look closely at the block diagram, it basically agrees with the schematic circuit drawn above.


Flip Flop Operation
S R Action
0 0 No Change
1 0 Q=1 ⊗Q=0
0 1 Q=0 ⊗Q=1
1 1 Not Allowed
 Note that the logic table is a bit different. Instead of A, B, and Q you have S, R, Q and NOT-Q (shown as ⊗Q). S and R are the inputs - representing (S)et and (R)eset. Q is the output, as in other logic circuits we've worked with, but there is another output - NOT-Q, which is exactly what it sounds like NOT-Q is always the opposite of Q - which is why a 1 at S and a 1 at R is never allowed - because mathematically, 1 is never equal to 0.

Next on our list of achievements is the multivibrator. A multivibrator is a type of flip flop that doesn't need a button to push. Once it starts running, it keeps flipping and flopping back and forth without any human intervention.

In short, a multivibrator works like an oscillator. 1,0,1,0,1,0,1 in a continuous loop, except it isn't a sine wave - it is a SQUARE wave. However, with proper filtering, the corners of the square wave can be rounded off to make a sine wave.

A Multivibrator is the basis of a "Clock" circuit - used to set the timing of a microprocessor, found in every calculator, computer, and cell phone. In more modern radio systems it is used to set the frequency of the radio, and for many other puropses. To be certain when we start getting into digital circuity this complex, there are much easier and less expensive ways to do the job. They're called microchips. One microchip can contain thousands, even millions of discrete components.

In the case of the multivibrator, there is the 555 timer chip.                      

Share this:

ABOUTME

Hi all. This is deepak from Bthemez. We're providing content for Bold site and we’ve been in internet, social media and affiliate for too long time and its my profession. We are web designer & developer living India! What can I say, we are the best..

Post a Comment
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.

Labels

LEKULE TV EDITORIALS ARTICLES DC ROBOTICS DIGITAL SEMICONDUCTORS GENERATOR AC EXPERIMENTS MANUFACTURING-ENGINEERING REFERENCE FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT TRANSDUCER & SENSOR VIDEO ARDUINO RENEWABLE ENERGY AUTOMOBILE TEARDOWN SYNCHRONOUS GENERATOR DIGITAL ELECTRONICS ELECTRICAL DISTRIBUTION CABLES AUTOMOTIVE MICROCONTROLLER SOLAR PROTECTION DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES WEARABLES CAMERA TECHNOLOGY COMMUNICATION GENERATION BATTERIES FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE CONTROL SYSTEM NUCLEAR ENERGY SMATRPHONE FILTER`S POWER BIOGAS BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS ENERGY SOURCE PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD BLUETOOTH C PROGRAMMING HOME AUTOMATION HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY COMPUTER DEFECE & MILITARY FLUORESCENT LAMP INDUSTRIAL ROBOTICS ANDROID ELECTRICAL DRIVES GROUNDING SYSTEM CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS USB ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS CONTROL MOTION ELECTRICAL LAWS INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES APPS & SOFTWARE BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RECTIFIER AND CONVERTERS RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS DC MOTOR DRIVES ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS WIRELESS BUILDING SERVICES COMPRESSOR CRANES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION INDUSTRIAL DRIVES LAPTOP SCIENCE THERMOCOUPLE TRIGONOMENTRY REFERENCE UART oscilloscope BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING ELECTROMECHANICAL FEATURED FILTER DESIGN HARDWARE JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER VALVE COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF