3D printing technology has come a
long way from being an experimental tool used to create roughly textured
objects from plastic resins. Here's a look at how 3D printing has made
it into industrial contexts, specifically aerospace.
3D printing
has been embraced by many, including hobbyists and those fabricating
their own products. Until recently, however, it's been unnattractive to
indurstry professionals. The improvement in 3D printing technology,
access to more diverse materials, and precision manufacturing,
however, have made it an ideal tool for 3D printing in the aerospace
industry. In particular, several companies are now actively using 3D
printing to create engines, interiors, and other parts of aircraft.The Federal Aviation Authority has also recognized the emergence of 3D printing in the aerospace industry, preparing for the emergence of additive manufacturing by drafting the “Additive Manufacturing Strategic Roadmap”. The group working on the roadmap includes the US Air Force, the US Army, and NASA.
One of the major challenges in trying to regulate 3D printing in the aerospace industry comes from the wide variety of processes, materials, and methods being used and ensuring they all meet safety standards.
3D printing and additive manufacturing can save companies money, streamline the manufacturing process, reduce waste, and open possibilities for more innovative designs. Here are a few examples of how 3D printing is being used in the aerospace industry right now.
GE Additive New Printer and ATP Engine
GE Additive, a branch of GE Technology, has recently taken the record for the largest industrial 3D printer built. The unnamed printer is capable of printing objects 1m in diameter using a 1 kW laser and thin layers of metal powder. The printer is also scalable so that even larger objects can be printed. The company intends for the printer to be used in industrial manufacturing for aircraft, automotives, and spacecraft.GE has already been using 3D printing for aircraft manufacturing with the Advanced Turboprop.
The ATP which includes 3D printed parts. Image courtesy of General Electric.
By 3D printing the ATP, the required parts for the engine were reduced from 855 to only 12. The engine will make its debut in the Cessna Denali in 2019.
Using 3D Printing to Bring Down Costs of the 787 Dreamliner
Boeing has been losing money for each 787 Dreamliner they've produced for years—nearly $30 million for each $265 million dollar plane. This is largely due to the high cost of R&D and manufacturing. The design relies on the use of titanium, as opposed to aluminum, to keep the large jet airliner light and fuel efficient.However, in early 2017, Boeing partnered with Norsk Titanium to begin using 3D printed parts in the manufacturing process to bring costs down, saving Boeing $3 million for each 787 produced.
One of the challenges with using 3D-printed parts for aviation is that each part needs to be approved by the FAA. So far, Norsk Titanium has received FAA approval for load bearing components and hopes to receive further approval for the rest of its manufacturing process to continue to bring down the cost of each 787 produced.
An FAA approved 3D manufactured component for the 787 Dreamliner. Image courtesy of Norsk Titanium.
The cost savings from 3D printing parts for the 787 comes from the reduced cost in raw materials used, as well as a reduction in the energy requirements for manufacturing.
It's important to note that Norsk Titanium uses a proprietary printing method known as Rapid Plasma Deposition. In this process, titanium is melted into argon in a gaseous state to print its parts using a MERKE IV RPD machine. Given the expensive and custom nature of this form of 3D technology, it's unlikely that most industries will get their hands on it terribly soon without contracting Norsk Titanium, themselves.
Archinaut: 3D Printing in Space
The advantages of 3D printing even extend beyond Earthly airspace. A company named Made in Space has been making gains in space-based 3D printing with its Archinaut project. Archinaut solves one of the most limiting factors of putting large building structures in space: size, space on launch vehicles, and the cost of launching.By using a combination of 3D printing and automated, robotic devices, large structures can be printed on demand in space using polymer-alloys. This opens up a range of possibilities for manufacturing space objects, like large telescopes.
Made in Space currently has two 3D zero-G printers on the International Space Station and plans to have their Archinaut project operational sometime in the next decade.
3D printing has been a tool of choice for hobbyists and startups to build enclosures, but it's been generally slow to appear in professional settings. This large-scale use of 3D printing in aeronautics represents a large step for this emerging technology.
Have you worked with 3D printing in a professional setting? Share your experiences in the comments below.
Feature image courtesy of General Electric.
No comments:
Post a Comment