Improving on an Improvement: A New MEMS Microphone from PUI Audio

MEMS microphones offer advantages over electret devices and now we have the PMM-3738-VM1000-R, which offers advantages over the standard MEMS approach.

The datasheet for the PMM-3738-VM1000-R describes this component as the “world’s first and only piezoelectric MEMS microphone”. I don’t know if I would ever be so bold as to describe any technological development as the “the world’s first and only”, at least not in this modern age of constant and universal innovation. But I am in no position to cast doubt on this assertion; the folks at PUI Audio surely know much more than I do about the current state of microphone technology.
I discussed MEMS microphones in a previous article. Here’s a quick recap:

Electret microphones have a capacitive element that is sensitive to the air-pressure variations that we call sound. This capacitive element has constant charge, and its capacitance varies in response to sound. The result is that air-pressure audio signals are converted into voltage audio signals. The popularity of electret microphones indicates that this is overall a good approach—simple, cost-effective, and generally adequate in terms of performance.
MEMS microphones also use a capacitive transducer element, but it’s a MEMS transducer.



This MEMS approach allows for smaller devices and higher levels of integration. As you can see in the diagram, the microphone is right there next to the signal-processing IC. The result is a microphone device that can output buffered (or amplified) analog audio or even digital audio data.

Piezo vs. Ceramic

We know that MEMS microphones themselves are not particularly new, so what exactly is this innovation that allows PUI to make the “world’s first and only” claim?
Apparently, every other MEMS microphone uses a ceramic transducer element. I don’t think that there’s anything inherently wrong with ceramic transducers, but a complication does arise when you consider that the MEMS microphone cannot be a sealed environment. The package must include a gap that allows sound waves to enter, and the sound waves will be accompanied by those two ubiquitous aspects of the physical world: moisture and dust.

Capacitive transducer elements are not particularly robust against physical contaminants. The problem is conveyed by this screenshot taken from one of two informational animations provided by PUI Audio.


Here we have a ceramic-transducer-based MEMS microphone. Dust particles have accumulated to the point at which they are obstructing the mic’s response to sound waves. Image taken from an animation on the PUI website.

The standard solution to this dust-and-moisture susceptibility is a physical barrier, i.e., a membrane of some kind that covers the sound hole. According to PUI, the membrane comes with three disadvantages:
  • higher cost
  • reduced sensitivity
  • altered frequency response
The piezoelectric approach results in a microphone that is inherently resistant to the effects of dust and moisture, and consequently the membrane becomes unnecessary.


The piezoelectric structure doesn’t prevent dust accumulation; rather, it allows the transducer to function more or less normally despite the presence of dust.

Piezoelectricity is a well-understood and widely utilized phenomenon, and I have not the slightest clue as to why it took so long for someone to develop a piezoelectric MEMS microphone. Obviously, there are some serious complexities involved, and it’s not surprising that the documentation for the PMM-3738-VM1000-R doesn’t elaborate on the technological breakthroughs that enabled PUI to develop a mic that (according to the datasheet) “provides superior performance and quality in all environments”.

Implementation

If you want to incorporate the PMM-3738-VM1000-R into one of your designs, here’s the long list of additional components that you will need:
  • capacitor
Seriously, though, this one qualifies for the “best typical application circuit of all time” award:


Diagram taken from the datasheet (PDF)

Specs

PUI’s product information indicates that the PMM-3738-VM1000-R offers a variety of high-performance characteristics: stable performance despite environmental variations, low noise, high dynamic range, fast startup time. I appreciate the uniformity of the frequency response over a fairly wide band:



However, I compared this response plot to that of one other MEMS mic and they look very similar. So apparently this is not something that is unique to the PMM-3738-VM1000-R or to piezoelectric technology in general.
One little cautionary note before we finish up: The PMM-3738-VM1000-R is robust against dust and moisture, but it seems rather sensitive to other forms of stress. See page 6 in the datasheet for details.




If you have any insights into the apparent difficulty of fabricating a piezoelectric MEMS microphone, feel free to share your knowledge via a comment.
Previous
Next Post »
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.
Related Posts Plugin for WordPress, Blogger...

Label

KITAIFA NEWS KIMATAIFA MICHEZO BURUDANI SIASA TECHNICAL ARTICLES f HAPA KAZI TU. LEKULE TV EDITORIALS ARTICLES DC DIGITAL ROBOTICS SEMICONDUCTORS MAKALA GENERATOR GALLERY AC EXPERIMENTS MANUFACTURING-ENGINEERING MAGAZETI REFERENCE IOT FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT VIDEO ZANZIBAR YETU TRANSDUCER & SENSOR MITINDO ARDUINO RENEWABLE ENERGY AUTOMOBILE SYNCHRONOUS GENERATOR ELECTRICAL DISTRIBUTION CABLES DIGITAL ELECTRONICS AUTOMOTIVE PROTECTION SOLAR TEARDOWN DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS MICROCONTROLLER CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES CAMERA TECHNOLOGY GENERATION WEARABLES BATTERIES COMMUNICATION FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE NUCLEAR ENERGY CONTROL SYSTEM FILTER`S SMATRPHONE BIOGAS POWER TANZIA BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT cartoon CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR ENERGY SOURCE 555 TIMER CIRCUITS AUTOCAD C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY DEFECE & MILITARY FLUORESCENT LAMP HOME AUTOMATION INDUSTRIAL ROBOTICS ANDROID COMPUTER ELECTRICAL DRIVES GROUNDING SYSTEM BLUETOOTH CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR USB AUDIO BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS ELECTRICAL LAWS HMI[HUMANI INTERFACE MACHINES INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS CONTROL MOTION ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BASIC AC THEORY BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE APPS & SOFTWARE BATTERIES AND POWER SYSTEMS ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE RECTIFIER AND CONVERTERS SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS BUILDING SERVICES COMPRESSOR CRANES DC MOTOR DRIVES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION LAPTOP THERMOCOUPLE TRIGONOMENTRY REFERENCE UART WIRELESS BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING FILTER DESIGN HARDWARE INDUSTRIAL DRIVES JUNCTION FIELD-EFFECT TRANSISTORS NUCLEAR POWER VALVE WWE oscilloscope 3D TECHNOLOGIES COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER MATERIAL PID PUMP SCIENCE SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION FEATURED MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF