The Race to Affordable LiDAR

LiDAR is becoming increasingly important in the autonomous vehicle industry. LiDAR technology is becoming increasingly competitive, and the race to produce an affordable LiDAR sensor is heating up.

To run safely, autonomous vehicles require a large amount of long range, high accuracy data regarding their environment. The cars need to analyze millions of points every second to build a 3D model of their environment. A widely accepted method to gather this data is to use a LiDAR sensor which incorporates a bank of lasers installed on the car, often the car's roof. Although LiDAR can use the laser bank to gather the required information, the sensor has traditionally been too expensive for commercial use.

Amidst the clash of goliath corporations over LiDAR tech, some companies are trying to lower the price of LiDAR for all.

LiDAR's Notoriously Expensive Implementation

Some LiDAR sensors are as expensive as the car itself. For example, the high-performance sensors employed by Google’s early self-driving cars were about $70,000. These exorbitant prices encourage other car manufacturers, such as Tesla, to choose a different path and use a combination of cameras, ultrasonic sensors, and radars rather than LiDAR units.


Raw data from the HDL-64E. Photo courtesy of Velodyne.

On the other hand, there has recently been a tremendous amount of research to lower the cost of LiDAR sensors while trying not to compromise on its performance. While LiDAR generally consists of a number of high-quality optical components inside a spinning housing, several companies are attempting to design solid-state LiDAR sensors which consolidate the bulky components into a single chip. In this way, they hope to reduce the cost significantly and pave the way for the commercialization of any LiDAR-related technology.

One of these companies is Velodyne LiDAR Inc., currently the global leader in the LiDAR industry. While the company already has a virtual monopoly on the LiDAR market, Ford and Chinese search giant, Baidu, have jointly invested $150 million in the company to make affordable LiDAR a reality.

Velodyne’s Solid-State LiDAR

Velodyne announced a new low-cost LiDAR which can revolutionize many industries such as autonomous vehicles, ridesharing, 3D mapping, and drones. The new sensor, developed in partnership with Efficient Power Conversion (EPC), has fewer moving parts and offers a more reliable operation than conventional sensors. It can also be easily integrated into a larger system. The company expects that, when mass produced, the solid state LiDAR will be under $50.

According to David Hall, founder and CEO of Velodyne LiDAR, the new sensor has three main advantages over previous designs: it is smaller, less expensive, and more reliable.
The miniaturized sensor is a monolithic gallium nitride (GaN) integrated circuit that consolidates all the required components into a 4mm square chip.


Velodyne's new 4mm LiDAR sensor compared to a U.S. quarter. Image courtesy of Velodyne.

According to Dr. Alex Lidow, CEO and co-founder of EPC Corporation, GaN technology can lead to higher image resolution while increasing the integration level and, consequently, reducing the product cost.

Unfortunately, the company still refuses to share any detailed information about the new sensor’s performance.

Will Non-Rotating LiDAR Replace Conventional LiDAR?

Velodyne, which has shrunk the sensor into a solid state chip, is able to dramatically reduce the product cost. However, as Anand Gopalan, vice president of Velodyne's R&D notes, there is a trade-off between cost and field of view. For example, while the high-performance LiDAR sensors are as expensive as $70,000, Velodyne currently has other sensors with shorter range and a narrower field of view which cost about a few thousands of dollars.

He adds that the new sensor compliments the existing ones. There are numerous applications and each application needs to meet certain needs. For an autonomous vehicle application, a 360-degree field of view is mandatory; however, there are some advanced driver assistance applications which need a much narrower field of view. Velodyne is developing an engine which can cover both these applications. An application which relies on a 360-degree field of view will take the engine and put it in a rotating solution; however, a less demanding application will utilize the engine in a non-rotating solution.

According to Gopalan, Velodyne’s products are trying to marry the transmitter and receiver so that the signal to noise ratio can be increased. Moreover, the company has a unique approach in detecting objects which are either very close to the sensor or very far away from it.

The Megafactory Advantage

In January 2017, Velodyne opened a LiDAR Megafactory as well as an R&D facility in San Jose, CA to stay ahead of the growing competition. The new factory will not only increase production, it is large enough to do sufficient in-house long range testing on new LiDAR technology.


Velodyne's new Megafactory. Image courtesy of Business Wire.

Production of existing sensors is already underway, with the goal of producing over one million sensors in 2018. Opening this factory is a step towards decreasing the large costs traditionally associated with LiDAR technology.

Attempts to Design Cheap LiDAR

In a previous post, we discussed some companies working toward more affordable LiDAR technology. Since then, other players have come into the arena.

Innoluce, in the Netherlands, resorts to a microelectromechanical mirror system to arrive at a 100-dollar solution which offers improved resolution and range.

MIT researchers have leveraged silicon photonics to shrink a LiDAR to a tiny chip. The fabrication process is CMOS-compatible and researchers believe that the product cost will be about only $10. Currently, the sensor range is just two meters but the research team claims that there is a clear path to reach a 100-meter range.

In addition to advancements made in LiDAR design, some companies, such as Oryx, are trying to find a more radical solution.

According to Rani Wellingstein, the co-founder of Oryx, radars generally detect objects at 150- or 200-meters, but they do not offer enough resolution. On the other hand, LiDAR provides great resolution at the cost of a range limited to generally about 60 meters which even reduces to nearly 30 meters when in direct sunlight. Oryx attempts to design a sensor significantly better than the existing solutions.

Oryx Technology

Oryx technology, an Israeli start-up, has recently announced a new sensor which uses long-wave infrared lasers to illuminate the road. Since this terahertz laser is invisible to human eye, in comparison with a LiDAR, the new sensor can radiate at higher power levels. Besides, unlike LiDARs and cameras, the new sensor is not blinded by fog or direct sunlight. This is due to the fact that we do not have much sunlight radiation at these frequencies and water drops only poorly absorb these waves.

Moreover, similar to radar, Oryx’s sensor treats the reflected signal as a wave rather than a particle. In this way, the sensor can take the Doppler Effect into account and calculate the velocity of objects around the car. A large number of microscopic rectifying nanoantennas are used to sense the reflected signal. According to David Ben-Bassat, Oryx’s other founder, these nanoantennas are the result of a six-year endeavor.  

Oryx has not revealed any performance metrics in terms of the sensor’s field of view; however, since the company is attempting to reduce the number of moving parts we can expect that the sensor cannot offer a 360-degree field of view.

Wellingstein claims that the new sensor has a million times the sensitivity of traditional LiDAR.

Affordable LiDAR will significantly advance the capabilities of numerous products, and the company who can make the first affordable LiDAR sensor will have a definite advantage. We could expect that these LiDAR units will bring high-resolution gesture recognition to mobile phones, allow package delivery drones to avoid collisions, and perhaps, one day, LiDAR will be affordable enough to be used in robots’ fingers so that they can recognize and manipulate objects with more confidence than ever before.
Previous
Next Post »
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.
Related Posts Plugin for WordPress, Blogger...

Label

KITAIFA NEWS KIMATAIFA MICHEZO BURUDANI SIASA TECHNICAL ARTICLES f HAPA KAZI TU. LEKULE TV EDITORIALS ARTICLES DC DIGITAL ROBOTICS SEMICONDUCTORS MAKALA GENERATOR GALLERY AC EXPERIMENTS MANUFACTURING-ENGINEERING MAGAZETI REFERENCE IOT FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT VIDEO ZANZIBAR YETU TRANSDUCER & SENSOR MITINDO ARDUINO RENEWABLE ENERGY AUTOMOBILE SYNCHRONOUS GENERATOR ELECTRICAL DISTRIBUTION CABLES DIGITAL ELECTRONICS AUTOMOTIVE PROTECTION SOLAR TEARDOWN DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS MICROCONTROLLER CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES CAMERA TECHNOLOGY GENERATION WEARABLES BATTERIES COMMUNICATION FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE NUCLEAR ENERGY CONTROL SYSTEM FILTER`S SMATRPHONE BIOGAS POWER TANZIA BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT cartoon CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP ENERGY SOURCE FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY DEFECE & MILITARY FLUORESCENT LAMP HOME AUTOMATION INDUSTRIAL ROBOTICS ANDROID COMPUTER ELECTRICAL DRIVES GROUNDING SYSTEM BLUETOOTH CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR USB AUDIO BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS ELECTRICAL LAWS HMI[HUMANI INTERFACE MACHINES INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS CONTROL MOTION ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS APPS & SOFTWARE BASIC AC THEORY BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE RECTIFIER AND CONVERTERS SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS BUILDING SERVICES COMPRESSOR CRANES DC MOTOR DRIVES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION LAPTOP THERMOCOUPLE TRIGONOMENTRY REFERENCE UART WIRELESS BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING FILTER DESIGN HARDWARE INDUSTRIAL DRIVES JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER SCIENCE VALVE WWE oscilloscope 3D TECHNOLOGIES COLOR CODES ELECTRIC TRACTION FEATURED FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER MATERIAL PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF