MIT’s Programmable Shape-Changing Material Goes Far Beyond Origami

MIT's tangible media group saw this area blooming and created the aeroMorph, a programmable inflatable with shape-changing behaviors.

A Self-Folding Origami-Like Inflatable: How and Why

The idea behind Aeromorph is to create an inflatable structure with sufficient degrees of freedom to fold like origami.
The structure is formed by using a CNC machine with special heads to allow for the proper formation. Two layers of fabric are placed directly on top of each other and a design is sealed together according to the user's design. The picture below illustrates the design rendered in software as well as in tangible form.

Image courtesy of the MIT Tangible Media Lab

MIT's Tangible Media Group's primary research domain is pneumatic actuation and its endless industrial applications. A huge advantage of inflated structures featuring air pressure variation is that they can confer human interactions directly on the inflated materials without having any electronic components embedded. AeroMorph includes a software that allows simulation that has the ability to predict the change a shape will take once fabricated, various methods for fabrication of the structures, and a material library (that has been tested) with fabrication parameters that ensure reliability in the process.

Due to its heat-sealing approach, designers can choose from a variety of materials from fabrics, plastics, or paper. While it may just seem like origami, this technology has a huge potential to simplify the manufacturing process of inflatable structures as well as prove itself in interactive wearable materials and soft robotics.

Possibilities in Soft Robotics and Interactive Wearables

Soft robotics is a sub-category of robotics that works primarily with non-rigid robots that are constructed with soft, formable materials such as the ones mentioned above. Soft robots have more degrees of freedom than conventional robots, which allows them to handle objects more precisely. One great example of soft robotics is the Octobot, which was designed and built using 3D printing and soft lithography.

Right now, scientists have created a robot that can not only swim but also walk along the sea floor and squeeze into tiny gaps on command. Recently, MIT has been working on pneumatically-actuated soft materials to incorporate in the design of the Tangible User Interfaces (TUI) as both input and output devices at their Tangible Media Group. Utilizing the compliance of soft actuators, as well as the speed and strength of the actuators pneumatic actuation, makes these interfaces highly appropriate for interactive wearables.

In other ongoing research, MIT's CSAIL has created an ingestible origami robot that is made of a dissolvable pig intestine casing and can, for example, remove button batteries lodged inside of the stomach lining. At present, however, the origami "robot" in question needs to be directed by means of an external magnetic field. If they were to incorporate aeroMorph's technology and flexibility into the tiny origami robot, however, it could eliminate the need for the external controls.

Image courtesy of the MIT Tangible Media Lab

There are several other further possible applications of aeroMorph:
  • Shape-changing packaging has the advantage over traditional air cushion packaging in that aeroMorph can create folds with or without large cushion structures.
  • Interactive origami cranes (and other such shapes) could be created with a pre-recorded rhythm that would allow it to flap its wings and fly.
  • Haptic feedback gloves could be revolutionized as the inside of the glove could be able to change surface texture/pressure, allowing for pressure-guided navigation.

Changing the World, Softly

Soft robotics are already revolutionizing industries such as agriculture. As noted in a Forbes article from 2016, soft robotics incorporates the advantages provided by conventional robotics, longer working hours to provide higher productivity and more consistent sanitation standards. The precision of soft robotics equates to less damage to produce and, eventually, faster production—a crucial element in the time-sensitive field.


However, problems remain in integrating robots into the vegetable and fruit-packing field, with one of the most notable being that of optics, an imperative tool for quality control. Yet, the new developments achieved through self-folding and responsive materials, like those developed by MIT Media Lab, could present a solution to this shortcoming, providing an additional "sense" used to assess quality. With the role that soft robotics is already taking in disparate industries, the applications for this innovation within the field are both exciting and pragmatic.
Previous
Next Post »
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.
Related Posts Plugin for WordPress, Blogger...

Label

KITAIFA NEWS KIMATAIFA MICHEZO BURUDANI SIASA TECHNICAL ARTICLES f HAPA KAZI TU. LEKULE TV EDITORIALS ARTICLES DC DIGITAL ROBOTICS SEMICONDUCTORS MAKALA GENERATOR GALLERY AC EXPERIMENTS MANUFACTURING-ENGINEERING MAGAZETI REFERENCE IOT FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT VIDEO ZANZIBAR YETU TRANSDUCER & SENSOR MITINDO ARDUINO RENEWABLE ENERGY AUTOMOBILE SYNCHRONOUS GENERATOR ELECTRICAL DISTRIBUTION CABLES DIGITAL ELECTRONICS AUTOMOTIVE PROTECTION SOLAR TEARDOWN DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS MICROCONTROLLER CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES CAMERA TECHNOLOGY GENERATION WEARABLES BATTERIES COMMUNICATION FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE NUCLEAR ENERGY CONTROL SYSTEM FILTER`S SMATRPHONE BIOGAS POWER TANZIA BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT cartoon CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP ENERGY SOURCE FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY DEFECE & MILITARY FLUORESCENT LAMP HOME AUTOMATION INDUSTRIAL ROBOTICS ANDROID COMPUTER ELECTRICAL DRIVES GROUNDING SYSTEM BLUETOOTH CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR USB AUDIO BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS ELECTRICAL LAWS HMI[HUMANI INTERFACE MACHINES INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS CONTROL MOTION ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS APPS & SOFTWARE BASIC AC THEORY BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE RECTIFIER AND CONVERTERS SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS BUILDING SERVICES COMPRESSOR CRANES DC MOTOR DRIVES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION LAPTOP THERMOCOUPLE TRIGONOMENTRY REFERENCE UART WIRELESS BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING FILTER DESIGN HARDWARE INDUSTRIAL DRIVES JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER SCIENCE VALVE WWE oscilloscope 3D TECHNOLOGIES COLOR CODES ELECTRIC TRACTION FEATURED FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER MATERIAL PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF