“Germ-Zapping” Robot Aims to Make Hospitals Cleaner and Safer

The Xenex robot, which looks like something straight out of a science fiction movie, produces UV rays that usually stay in the cosmos. It's changing the way hospitals handle infectious diseases by using UV light to sanitize the small organisms that cause us the biggest problems.

Hospital-Acquired Infections (HAIs)

Hospital-acquired infections or healthcare-associated infections (HAIs), are highly prevalent in the United States, with about 722,000 patients contracting one annually according to the Center for Disease Control and Prevention. This amounts to about one out of every 25 admitted patients. The fatality rate for HAIs is over 10%, making it one of the most serious problems modern hospitals face.
HAIs are transferred in various ways, depending on the type of infection. Many times, they are the result of bacteria that has developed a resistance to treatment with antibiotics.
The Xenex robot is an example of how medicine and engineering intersect to improve healthcare. This device is capable of using UV light to sanitize healthcare facilities with extraordinary thoroughness.


The Xenex robot sanitizing a hospital room. Image courtesy of Xenex.

Better Technology, Better Hospitals

Xenex began as a startup founded in 2008 by epidemiologists Dr. Mark Stibich and Dr. Julie Stachowiak. Their Xenex LightStrike Germ-Zapping Robot uses Full Spectrum Pulsed Xenon UV (PPX-UV) light to kill infection-carrying pathogens in hospital rooms.
Compared to the older technology of mercury UV disinfection, the Xenon bulbs used in the Xenex robot sweep across the entire UV-C spectrum, eliminating a wider range of infectious organisms, with the newest version of the robot targeting six of the most problematic pathogens for HAIs. It can also target the pathogens causing Ebola, Anthrax, HIV, and many other communicable diseases. The high-intensity light is sent in brief pulses out of the machine, which would be placed in the center of an empty hospital room for a total of only five minutes.
The light pulses aim to destroy the cells of the bacteria, viruses, and fungi that cause HAIs. Because UV-C rays from the sun are usually deflected by the ozone layer, earthly organisms have not developed a resistance to them. In methods similar to but more intense than antibiotic treatments, the population of pathogens is destroyed by irreversible destruction of their DNA so that they cannot replicate. The cell walls are also irreparably damaged, causing likely cell death.
In the Xenex robot, this is accomplished through four processes:
  • Photohydration – the UV light attracts water molecules into the DNA, which disrupts the replication process
  • Photosplitting – the “backbone” of the strands of DNA within the bacteria are broken
  • Photodimerization – the “rungs of the ladder” in a strand of DNA are fused together to give the improper code to any future replications. This is the only process that Mercury UV Disinfection is capable of.
  • Photocrosslinking – damages the cell wall by preventing the creation of new proteins.
These events effectively destroy the DNA replication and repair mechanisms within the cells. Different pathogens are susceptible to different wavelengths of UV-C light, which is why the broad spectrum provided by Xenon bulbs is so effective.


Representation of the four processes the Xenex robot employs to destroy bacterial DNA. Image courtesy of Xenex.

Sensors and UV-C

The Xenex robot is much smarter and easier to work with than its predecessors. In the newest edition, the engineers have incorporated many premium parts that help the machine be its best. The disinfection cycle is a much shorter and more predictable five minutes compared to the varying 25 to 45-minute cycle that Mercury bulbs require. The unit runs on wall power and can clean up to 64 hospital rooms in one day without overheating. The Xenon bulbs, themselves, are also non-toxic, unlike the Mercury bulbs used in previous technologies.
The robot is equipped with Wi-Fi and cellular connectivity to provide real-time monitoring of data and diagnostics. The GUI loaded in the machine is simple and allows for custom report generation. Perhaps the most interesting engineering feature added is a safety measure. The UV-C light emitted from the Xenex is more harmful to humans than UV-A or UV-B. However, this light cannot travel through walls or glass, so it is only harmful if a human is in the room while the machine is in operation.
The newest Xenex robot incorporates sensors to ensure that a human is not around. These include heat readings and movement sensors to automatically turn the machine off if someone is in the room. The robot also comes equipped with sensor-loaded caution signs to warn anyone about to enter the room and interact with the machine to stop the light pulses if a person is about to enter. Read the details of the door proximity sensor patents here.


Motion sensors placed in front of doors detect when someone enters a room being sanitized. Image courtesy of Xenex.

The Xenex company has over 12 patents regarding the robot, including frequency and duration of pulses, xenon gas mixtures, and other features.

The Xenex robot has brought forth the useful, almost futuristic technology of Xenon lamps while incorporating features which make it extremely easy and safe to use. It’s definitely here to stay – unlike the bacteria it’s after.
Previous
Next Post »
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.
Related Posts Plugin for WordPress, Blogger...

Label

KITAIFA NEWS KIMATAIFA MICHEZO BURUDANI SIASA TECHNICAL ARTICLES f HAPA KAZI TU. LEKULE TV EDITORIALS ARTICLES DC DIGITAL ROBOTICS SEMICONDUCTORS MAKALA GENERATOR GALLERY AC EXPERIMENTS MANUFACTURING-ENGINEERING MAGAZETI REFERENCE FUNDAMENTAL OF ELECTRICITY ELECTRONICS IOT ELECTRICAL ENGINEER MEASUREMENT VIDEO ZANZIBAR YETU TRANSDUCER & SENSOR MITINDO RENEWABLE ENERGY ARDUINO AUTOMOBILE SYNCHRONOUS GENERATOR ELECTRICAL DISTRIBUTION CABLES DIGITAL ELECTRONICS AUTOMOTIVE PROTECTION SOLAR TEARDOWN DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS CIRCUITS THEORY MICROCONTROLLER PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES CAMERA TECHNOLOGY GENERATION BATTERIES FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES WEARABLES COMMUNICATION ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE NUCLEAR ENERGY CONTROL SYSTEM FILTER`S SMATRPHONE BIOGAS POWER TANZIA BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT cartoon CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR ENERGY SOURCE 555 TIMER CIRCUITS AUTOCAD C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY DEFECE & MILITARY FLUORESCENT LAMP HOME AUTOMATION INDUSTRIAL ROBOTICS ANDROID COMPUTER ELECTRICAL DRIVES GROUNDING SYSTEM BLUETOOTH CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR USB AUDIO BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS ELECTRICAL LAWS HMI[HUMANI INTERFACE MACHINES INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS CONTROL MOTION ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BASIC AC THEORY BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE APPS & SOFTWARE BATTERIES AND POWER SYSTEMS ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE RECTIFIER AND CONVERTERS SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS BUILDING SERVICES COMPRESSOR CRANES DC MOTOR DRIVES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION LAPTOP THERMOCOUPLE TRIGONOMENTRY REFERENCE UART WIRELESS BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING FILTER DESIGN HARDWARE INDUSTRIAL DRIVES JUNCTION FIELD-EFFECT TRANSISTORS NUCLEAR POWER VALVE WWE oscilloscope 3D TECHNOLOGIES COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER MATERIAL PID PUMP SCIENCE SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION FEATURED MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF