MIT Fusion Reactor Sets Another Record Right Before Being Shut Down for Good

MIT’s experimental fusion reactor, Alcator C-Mod, breaks the plasma pressure record on its last day of operation.

The previous plasma pressure record, 1.77 atmospheres, was set by this same reactor in 2005. Although the reactor has improved the pressure record by nearly 15%, lack of government funding has led to its shutdown.

Before closing down the Tokamak (doughnut-shaped) reactor forever, the MIT team, which had nothing to lose, decided to push the device to its limits. According to Earl Marmar, the team lead, new things were discovered from the experiment without damaging the reactor.


Researcher Ted Golfinopoulos performs maintenance in MIT’s Alcator C-Mod. Image courtesy of Computerworld.

The record-breaking experiment achieved the plasma pressure of 2.05 atmospheres at 35 million degrees Celsius. Sinking 1.4 million amps, the reactor experienced 300 trillion fusion reactions per second.
Dale Meade, the former deputy director of the Princeton Plasma Physics Laboratory, noted that MIT’s reactor has been highly successful and the new record is quite remarkable. He added that the recent record validates that magnetic confinement would be a good direction to follow for future fusion research.

The Challenges of Fusion Energy

Fusion energy is what powers the stars. However, replicating this process on Earth is not easy at all. The principle of fusion energy is that energy and matter are interchangeable and, according to Einstein’s equation,

, a tiny bit of matter can produce a vast amount of energy.

There are a number of ways to fuse atoms which cannot be employed in a practical fusion reactor. For example, a fusion bomb is triggered by a small fission bomb; however, this uncontrollable process is not a sustainable option for a fusion reactor.
An alternative method is to use a particle accelerator to fuse individual atoms into one. Unfortunately, this will not produce enough energy for general energy consumption purposes.
Scientists have been experimenting for more than fifty years in attempts to build a practical fusion reactor. And yet, a big payoff does not seem to be achievable for several more decades.
Simply put, a fusion reactor heats atoms to a very high temperature (up to a hundred million degrees) while keeping them contained. Consequently, a state called plasma can be achieved which is a free-flowing mass of protons and electrons.

High temperature, sufficient density, and confinement—as specified by the Lawson criterion—are the key elements of the fusion reaction. Under these conditions, atoms are forced toward each other and, with a mighty release of energy, the two atoms become one. The energy is released in the form of heat and can be used in a way similar to how the heat from fossil fuels is used.
It is necessary to put in some energy to form the plasma and start the reaction. All the modern research reactors have already created fusion. However, there is one major problem: the energy we input to start and keep the reaction going is more than the power we get out of it. How much power does a reactor need? MIT’s experiment consumed a staggering 4 megawatts to initiate the reaction.
A positive energy fusion source requires self-sustaining plasma. In other words, we need the plasma to retain its state by consuming only a small amount of energy. One way to achieve this is by confining the plasma and reaching a certain pressure. According to MIT, pressure is two-thirds of what we need to do to arrive at a practical fusion source. This is mainly due to the fact that the power we get from the reactor increases proportionally with the square of the plasma pressure.
Thanks to its advanced superconductor technology, MIT’s reactor could produce half the power it consumed. Other fusion reactors the same size as the Alcator C-Mod could never come close to producing this much power.


The exterior of the Alcator C-Mod. Image courtesy of Computerworld.

There are two potential methods to confining the plasma: inertial and magnetic confinement. Here we will have a brief review of these two methods.

Inertial Confinement

Inertial confinement fusion is one of the two main potential solutions for building a fusion reactor. This method uses high-energy laser beams to heat the fuel of the nuclear fusion reactions. The heat explodes the outer layer of the fuel, which is a pellet of a few milligrams of Deuterium and Tritium, which accelerates the remainder of the fuel inward. The acceleration and the achieved compression can be strong enough to initiate the fusion reactions.
When the technique was invented in the 1970s, people thought that it would be soon the practical way of achieving fusion power. However, later experiments showed that the power consumed is more than the power achieved. In October 2013, a fusion reactor from the National Ignition Facility could perform a positive-energy experiment.


The density and temperature achieved in the inertial confinement implosion can rival those found at the center of the Sun. Image courtesy of Wikipedia.

Magnetic Confinement

Plasma is extremely hot and needs to be confined; otherwise, it will rapidly cool down. Due to the very high temperature of the plasma, it is impossible to use any solid material to confine it. To circumvent this problem, researchers use magnetic fields to contain the atoms. Inputting further and further energy in the form of heat, the confined atoms may trigger fusion reactions.

A Tokamak, invented in the 1950s by Soviet physicists, is a fusion reactor which employs two orthogonal magnetic fields to confine the plasma. A Tokamak is based on the conductivity of the plasma and passes a current through it to form a magnetic field called the poloidal field. This field further confines the plasma.

The magnetic confinement seems more promising than the inertial confinement technique, especially after the recent plasma pressure record set by the MIT’s reactor.

International Thermonuclear Experimental Reactor (ITER)

The Department of Energy has channeled its financial support to a $30 billion superconducting reactor in France called ITER. This left MIT’s reactor with no further support and shut it down after 23 years of operation.

ITER, which is nearly 800 times larger than MIT’s reactor, is the world’s largest Tokomak with expected heat generation of 500MW. Seven nations, including the U.S., are collaborating to build ITER. ITER’s construction, which is estimated to cost $40 to $50 billion, started in France in 2007 and it will not come online until 2027.


An aerial view of ITER. Image courtesy of Computerworld.

A fusion reactor can offer a number of advantages over a fission power source. The fuels for the fusion power are the isotopes of hydrogen which are plentiful on the Earth. And the reaction does not produce atmospheric contaminants or long-lived toxic by-products. In addition, the fusion power produces little radioactive waste in comparison with the fission reactors.



The unlimited clean energy of fusion source must one day be achievable; however, we need to give the researchers enough time and resources. Otherwise, we cannot expect them to work hard and be innovative while being constantly worried about their financial support.

The results of the last experiment of the MIT’s decommissioned reactor were presented at the IAEA’s Fusion Energy Conference in Kyoto on October 17.
Previous
Next Post »
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.
Related Posts Plugin for WordPress, Blogger...

Label

KITAIFA NEWS KIMATAIFA MICHEZO BURUDANI SIASA TECHNICAL ARTICLES f HAPA KAZI TU. LEKULE TV EDITORIALS ARTICLES DC DIGITAL ROBOTICS SEMICONDUCTORS MAKALA GENERATOR GALLERY AC EXPERIMENTS MANUFACTURING-ENGINEERING MAGAZETI REFERENCE IOT FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT VIDEO ZANZIBAR YETU TRANSDUCER & SENSOR MITINDO ARDUINO RENEWABLE ENERGY AUTOMOBILE SYNCHRONOUS GENERATOR ELECTRICAL DISTRIBUTION CABLES DIGITAL ELECTRONICS AUTOMOTIVE PROTECTION SOLAR TEARDOWN DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS MICROCONTROLLER CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES CAMERA TECHNOLOGY GENERATION WEARABLES BATTERIES COMMUNICATION FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE NUCLEAR ENERGY CONTROL SYSTEM FILTER`S SMATRPHONE BIOGAS POWER TANZIA BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT cartoon CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP ENERGY SOURCE FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY DEFECE & MILITARY FLUORESCENT LAMP HOME AUTOMATION INDUSTRIAL ROBOTICS ANDROID COMPUTER ELECTRICAL DRIVES GROUNDING SYSTEM BLUETOOTH CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR USB AUDIO BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS ELECTRICAL LAWS HMI[HUMANI INTERFACE MACHINES INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS CONTROL MOTION ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS APPS & SOFTWARE BASIC AC THEORY BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE RECTIFIER AND CONVERTERS SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS BUILDING SERVICES COMPRESSOR CRANES DC MOTOR DRIVES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION LAPTOP THERMOCOUPLE TRIGONOMENTRY REFERENCE UART WIRELESS BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING FILTER DESIGN HARDWARE INDUSTRIAL DRIVES JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER SCIENCE VALVE WWE oscilloscope 3D TECHNOLOGIES COLOR CODES ELECTRIC TRACTION FEATURED FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER MATERIAL PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF