Hello

Welcome lekule blog

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation.
together in the world. #lekule86
Join us on

The EFM8 Series from Silicon Laboratories: A Powerful New Embedded Development Platform

Silicon Laboratories has recently provided a new series of microcontrollers and development boards for those interested in low-cost, low-power, high-performance mixed-signal applications.

The 8051 Lives On

Silicon Laboratories has accumulated an extensive collection of 8-bit microcontrollers based on the 8051 architecture, and the new EFM8 series continues this tradition. The 8051 was originally developed by Intel in 1980, and this “8-bit microcomputer” (as it was first called) proved so successful that eventually numerous different manufacturers developed 8051-based microcontrollers. Two important reasons for the surprising endurance of this 35-year-old architecture are code compatibility and human compatibility: new devices benefit from both the vast quantity of existing 8051 code and the extensive experience provided by engineers who have previously worked with 8051-based microcontrollers. Obviously, though, much has changed in the world of microelectronics since 1980, so current manifestations of the 8051 incorporate a variety of improvements in performance and functionality.

Only Eight Bits?

Some may find it surprising that leading manufacturers are still marketing 8-bit devices; 8 bits may seem sadly inadequate in an age of 64-bit CPUs and 32-bit microcontrollers. But like so much else in life, more is not always better. Many embedded applications have little need for 16- or 32-bit variables and operations, and in such cases 8-bit devices offer smaller form factors, lower cost, simpler development processes, and higher operational efficiency. A 32-bit architecture, on the other hand, may be preferable to applications that require more memory or higher signal processing capabilities; there is no doubt that the performance of an 8-bit processor core will be less than impressive if it is subjected to, say, a continuous succession of 32-bit floating-point operations.

Upgrades

The processing performance and peripheral functionality of the EFM8 series far surpass those of the original 8051. It is no surprise that clock frequencies have increased, but in addition the SiLabs 8051 core has a pipelined architecture that greatly improves the actual processing speed. In the case of the standard 8051, clock speed is not a clear indicator of processing performance because a single instruction requires 12 clock cycles to execute. So instead of MHz (millions of cycles per second), a better metric is MIPS (millions of instructions per second). The SiLabs pipelined 8051 core can execute 70% of instructions in 1 or 2 clock cycles, thus approaching peak throughput of 50 MIPS at a maximum clock rate of 50 MHz.

The EFM8 series incorporates an impressive set of analog and digital peripherals, such as serial communication interfaces, analog comparators, an analog-to-digital converter, and a fully integrated USB module (unfortunately no digital-to-analog converter). Perhaps even more important, SiLabs provides a prodigious collection of application notes, sample code, and reference designs—thus ensuring that developers will actually be able to successfully use these peripherals.

Tools

The most impressive microcontroller would be far from popular if designers had no convenient, effective way of developing firmware and evaluating functionality. Herein lies one of the prominent advantages of the EFM8 devices: they are fully supported by SiLabs’s powerful (and free) integrated development environment, and they can be thoroughly evaluated using the pleasantly affordable EFM8 development boards.


Firmware

SiLabs’s integrated development environment is called Simplicity Studio, and the name implies the objective: to make firmware development and testing an efficient and productive process.

You can decide for yourself to what extent this objective is achieved, but considering the price ($0), Simplicity Studio offers an appealing collection of features. One major advantage is free, nonrestricted access to the Keil C compiler. C is an excellent language for programming microcontrollers: it transcends the oppressively low-level nature of assembly code, yet it limits the designer’s ability to lose touch with the details of a device’s hardware. Another interesting feature is a seamlessly integrated energy profiler that displays the microcontroller’s real-time current and power consumption:


The EFM8 devices are specifically marketed as ultra-low-power solutions for such applications as automation, wearables, and IoT; the energy profiler adds another dimension to these designs by helping developers to further optimize power consumption.


Hardware

SiLabs sells six different development boards for the EFM8 series microcontrollers. A single USB cable provides smooth integration with Simplicity Studio, and much functionality—LCD control, USB communication, capacitive touch sensing, joystick interfacing, environmental sensing—can be evaluated without any additional hardware.


Conclusion


The EFM8 series microcontrollers and development boards are high-performance, affordable options not only for engineers but also for students and hobbyists. The supporting documentation and software tools can help you to move rapidly from concept to functional device. Upcoming articles will provide detailed guidance on using EFM8 development boards to realize a variety of simple and more complex projects.

Share this:

ABOUTME

Hi all. This is deepak from Bthemez. We're providing content for Bold site and we’ve been in internet, social media and affiliate for too long time and its my profession. We are web designer & developer living India! What can I say, we are the best..

Post a Comment
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.

Labels

EDITORIALS ARTICLES LEKULE TV DC ROBOTICS DIGITAL SEMICONDUCTORS GENERATOR AC EXPERIMENTS MANUFACTURING-ENGINEERING REFERENCE FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT TRANSDUCER & SENSOR VIDEO ARDUINO RENEWABLE ENERGY AUTOMOBILE TEARDOWN SYNCHRONOUS GENERATOR DIGITAL ELECTRONICS ELECTRICAL DISTRIBUTION CABLES MICROCONTROLLER AUTOMOTIVE SOLAR PROTECTION DIODE AND CIRCUITS ELECTRONICS BASIC ELECTRICAL MOTOR SWITCHES CIRCUIT BREAKERS CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES WEARABLES CAMERA TECHNOLOGY COMMUNICATION GENERATION BATTERIES FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE CONTROL SYSTEM NUCLEAR ENERGY POWER SMATRPHONE FILTER`S BIOGAS BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS ENERGY SOURCE PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR HOME AUTOMATION 555 TIMER CIRCUITS AUTOCAD BLUETOOTH C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY COMPUTER DEFECE & MILITARY FLUORESCENT LAMP INDUSTRIAL ROBOTICS ANDROID ELECTRICAL DRIVES GROUNDING SYSTEM CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS USB ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE APPS & SOFTWARE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS CONTROL MOTION ELECTRICAL LAWS INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RECTIFIER AND CONVERTERS RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS DC MOTOR DRIVES ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS WIRELESS BUILDING SERVICES COMPRESSOR CRANES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION INDUSTRIAL DRIVES LAPTOP SCIENCE THERMOCOUPLE TRIGONOMENTRY REFERENCE UART oscilloscope BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING ELECTROMECHANICAL FEATURED FILTER DESIGN HARDWARE JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER VALVE COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF