Hello

Welcome lekule blog

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation.
together in the world. #lekule86
Join us on

How to Make a Robot – Lesson 1: Getting Started

Getting Started
Welcome to the first installment of the Grand RobotShop Tutorial, a series of 10 lessons that will teach you how to make your own robot. This tutorial is aimed at anybody willing to get started in robotics and have a basic understanding of terms such as “voltage”, “current”, “motor”, and “sensors”. Although this might seem pretty basic, even people with previous robot building experience might find useful information regarding the general method of building a robot.


What is a robot?

There are many definitions of robot and no real consensus has been attained so far. We loosely define a robot as follows:

Robot: An electromechanical device which is capable of reacting in some way to its environment, and take autonomous decisions or actions in order to achieve a specific task.

This means that a toaster, a lamp, or a car  would not be considered as robots since they have no way of perceiving their environment. On the other hand, a vacuum cleaner that can navigate around a room, or a solar panel that seeks the sun, can be considered as a robotic system.

It is also important to note that the  “robots” featured in Robot Wars for instance or any solely remote controlled device would not fall under this definition and would be closer to a more complex remote controlled car.

Although this definition is quite general, it might need to evolve in the future in order to keep up with the latest advancement in the field. In order to get a sens of how robotics is rapidly growing, we suggest you take a look at the RobotShop History of Robotics.


Let’s get started

This series of tutorials is intended to guide you through the steps of building a complete mobile robot.
There are 10 lessons that will be released in the following 10 weeks.  Each lesson guides you through one step of making a general-purpose mobile robot.  This will enable you to build your very own mobile robot in order to perform a task of your choice. Each lesson will be illustrated with an example from RobotShop experience in producing the RobotShop Rover. The lessons are intended to be read one after the other and build upon the information gained.



STEP 1
The first step is to determine what your robot should do (i.e. what is its purpose in life). Robots can be used in almost any situation and are primarily intended to help humans in some way. If you are unsure of what you want your robot to do or simply want to concentrate your efforts on specific tasks, here are some ideas:

Knowledge & Learning

LEGO Mindstorms NXTIn order to build increasingly complex robots, most professionals and hobbyists use knowledge they have acquired when building previous robots. Instead of building one robot, you can learn how to use individual components with the objective of building your own “knowledge library” to use to undertake a larger, more complex design in the future.


Amusement & Companionship

Teddy Bear Companion Robot
Building a robot is in and of itself is fun and exciting. Robotics incorporates aspects of many disciplines including engineering (mechanical, electrical, computer), sciences (mathematics and physics) and arts (aesthetics) and users are free to use their imagination. Amusing others with your creations (especially if they are user-friendly and interactive) helps others to become interested in the field.


Competitions & Contests

Robot Soccer
Competitions give the project design guidelines and a due date. They also put your robot against others in the same class and test your design and construction skills. Although many competitions are specifically for students (elementary to university), there also exist open competitions where adults and professionals alike can compete.


Autonomous life form

Alice Micro Robot Swarm
Humans are natural creators and innovators. The next great innovation will be to develop a fully autonomous life form that rivals or surpasses ourselves in ability and perhaps creativity. This goal is still being accomplished in small steps by individuals, research organizations and professionals.


Domestic or Professional tasks

Neato Cleaning Tile Edge
Domestic robots help liberate people from unpleasant or dangerous tasks and give them more liberty and security. Professional and Service Robots are used in a variety of applications at work, in public, in hazardous environments, in locations such as deep-sea, battlefields and space, just to name a few. In addition to the service areas such as cleaning, surveillance, inspection and maintenance, we utilize these robots where manual task execution is dangerous, impossible or unacceptable.  Professional and Service Robots are more capable, rugged and often more expensive than domestic robots and are ideally suited for professional and/or commercial use.


Security and Surveillance

SuperDroid HD2 SWAT / EOD Tactical Treaded Robot w / 5DOF Arm
Most mobile robots are used to venture into areas where humans either should not or cannot go. Robots of various sizes (either remote controlled, semi-autonomous or fully autonomous) are an ideal choice for these tasks.




Practical Example
We anticipate that most of you following this guide have the objective of building a robot for learning and knowledge, but also for sheer fun; though many will have a specific idea or project they want to materialize.


The last major consideration is budget. It is difficult to know exactly what people have in mind when they build their first robot; one might already want to build an autonomous snow removal robot, while another simply wants to make an intelligent clock. A simple programmable mobile robot might cost about $100 while a more complex can be several thousands of dollars.


In this exercise, we have chosen to make a mobile platform in order to get an understanding of motors, sensors, microcontrollers and programming, and to include a variety of sensors. We’ll keep the budget to about $200 to $300 since we want it to be fairly complete.


Simple Mobile Robot CAD

For further information on learning how to make a robot, please visit the RobotShop Learning Center. Visit the RobotShop Community Forum in order to seek assistance in building robots, showcase your projects or simply hang-out with other fellow roboticists.

Share this:

ABOUTME

Hi all. This is deepak from Bthemez. We're providing content for Bold site and we’ve been in internet, social media and affiliate for too long time and its my profession. We are web designer & developer living India! What can I say, we are the best..

Post a Comment
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.

Labels

LEKULE TV EDITORIALS ARTICLES DC ROBOTICS DIGITAL SEMICONDUCTORS GENERATOR AC EXPERIMENTS MANUFACTURING-ENGINEERING REFERENCE FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT TRANSDUCER & SENSOR VIDEO ARDUINO RENEWABLE ENERGY AUTOMOBILE TEARDOWN SYNCHRONOUS GENERATOR DIGITAL ELECTRONICS ELECTRICAL DISTRIBUTION CABLES AUTOMOTIVE MICROCONTROLLER SOLAR PROTECTION DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES WEARABLES CAMERA TECHNOLOGY COMMUNICATION GENERATION BATTERIES FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE CONTROL SYSTEM NUCLEAR ENERGY SMATRPHONE FILTER`S POWER BIOGAS BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS ENERGY SOURCE PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD BLUETOOTH C PROGRAMMING HOME AUTOMATION HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY COMPUTER DEFECE & MILITARY FLUORESCENT LAMP INDUSTRIAL ROBOTICS ANDROID ELECTRICAL DRIVES GROUNDING SYSTEM CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS USB ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS CONTROL MOTION ELECTRICAL LAWS INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES APPS & SOFTWARE BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RECTIFIER AND CONVERTERS RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS DC MOTOR DRIVES ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS WIRELESS BUILDING SERVICES COMPRESSOR CRANES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION INDUSTRIAL DRIVES LAPTOP SCIENCE THERMOCOUPLE TRIGONOMENTRY REFERENCE UART oscilloscope BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING ELECTROMECHANICAL FEATURED FILTER DESIGN HARDWARE JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER VALVE COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF