Ultimate Eco Car Challenge | Development of Ultimate Eco Car - LEKULE

Breaking

15 Dec 2015

Ultimate Eco Car Challenge | Development of Ultimate Eco Car



01-ultimate_eco_car-developments of hybrid technology-development of hydrogen fuel-fuel cell-hybrid technology
Continuous improvement in conventional engines, including lean-burn gasoline engines, direct injection gasoline engines and common rail direct-injection diesel engines, as well as engines modified to use alternative fuels, such as compressed natural gas (CNG) or electricity (for Electric Vehicle).

Engineers may disagree about which fuel or car propulsion system is best, but they do agree that hybrid technology is the core for eco-car development.

01-ultimate_eco_car-diesel hybrid-fuel cell vehicle-alternate fuel hybrid vehicles

“Plug-in hybrid” technology brings further potential for substantial CO2 emissions reductions from vehicles. It has a higher battery capacity and is thus more fuel-efficient than the current hybrid, assisted by the power of engine. For a short-distance drive, it could be run with electricity charged during the night. Depending on how electricity is generated, the vehicle could run with much lower CO2 emissions. In order to commercialize the plug-in hybrid, there is again a need for a breakthrough in battery technology. It is necessary to develop a smaller-sized battery with higher capacity. Plug-in hybrids could contribute to reducing substantial amounts of CO2 emissions from vehicles, as well as fossil fuel use, by charging from cleaner electricity sources in the future. 


Challenges of increasing power performance
In order to improve the driving performance, its power train was completely redesigned. To increase motor output, a high-voltage power-control was adopted. Although this technology was used in industrial machines and trains, the idea of incorporating it into an automobile did not easily occur at first. First of all, the system itself would take up a substantial amount of space and secondly, there was no prior example of applying this method to a motor that switches between output and power generation at such a dizzy pace. 


Once the development of the high-voltage power circuit began, there was a mountain of problems, such as what to do about the heat generated by increasing voltage and the noise generated. To reevaluate the power train, the project team had to produce prototypes and repeat numerous tests. The prototyping stage went to seven prototypes instead of the usual three, and the total distance driven by these prototypes during testing exceeded one million kilometers. 

No comments: