Mechanical Energy Storage Methods in Renewable Energy Plant
There are three methods is to be used for storing the energy and they are:
1. Pumped Storage
2. Compressed Air Storage
3. Flywheel Storage
1. Pumped Storage method in Renewable Plants
Pumped
storage is the most successful, economical and widely used
energy-storage technology presently available to electrical utilities
for load levelling (peak shaving). It could also be used for storing
electrical energy produced from solar and wind energy. Electrical power
in excess of immediate demand is used to pump water from a supply (lake,
river or reservoir) at a lower level to a reservoir at a higher level.
During peak demand period when the demand exceeds the normal generating
capacity, water is allowed to flow backwards through a hydraulic
turbine, which drives an electric generator and produces power to meet
additional demand.
In most pumped storage plants,
the turbine generator system is reversible and can serve to pump water
as well. In the pumping mode, the generator works as motor and draws
electrical power from the electrical network. The turbine then operates
as a pump driven by the motor. Start up of the turbine-generator or
reversal from motor-pump to turbine-generator requires only a few
minutes. The overall energy recovery efficiency of pumped storage, that
is, the recovered electrical energy as a percentage of electrical energy
used to pump water, is about 70 per cent.
There are relatively few suitable sites where there
is water supply at a lower level and a reservoir can be constructed at a
higher level. However, the use of natural or excavated underground
caverns as lower reservoirs, now being developed, should greatly
increase the number of possible sites.
2. Compressed Air Storage method in Renewable Energy plant
In
a compressed-air storage system, excess electrical energy is used to
compress air, which is stored in a reservoir to be used later in the
combustor of a gas turbine to generate electric power. In a gas turbine,
roughly 60% of the power output is consumed in compressing air for
combustion of the gas. Compressed air can also be used to produce
mechanical output through an air turbine.
Electric
power in excess of immediate demand is supplied to the motor/ generator
unit which drives the compressor. The compressed air at about 70 atm,
is stored in a suitable reservoir. The air is heated during compassion
and may have to be cooled prior to storage to prevent damage to the
reservoir walls. When additional power is needed to meet the demand, the
compressed air is released and heated in a combustor using gas or oil
fuel. The hot compressed air is then expanded in a gas turbine connected
to the motor/generator unit which now acts as generator. The overall
recovery efficiency is 65 to 70 per cent. A clutch is used for coupling
and decoupling the motor/generator unit with a compressor/turbine.
Compressed-air
storage reservoirs would probably be too large and too expensive for
above-the-surface construction; hence underground, reservoirs preferably
the naturally existing ones, are being considered. Among the
possibilities are natural caverns, deep aquifers, depleted gas or oil
reservoirs mined-out rocks or salt caverns, and abandoned mines. A
commercial installation is in operation near Bremen, Germany.


No comments:
Post a Comment