Hello

Welcome lekule blog

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation.
together in the world. #lekule86
Join us on

Centrifugal Casting | Centrifuging Process | Centrifugal casting Types

Centrifugal Casting:
Centrifugal casting is done by pouring molten metal into a rotating mould. The centrifugal force acting on the mould helps in feeding and positioning the metal in the mould. Mould rotation is continued till after the metal is solidified.


01-centrifugal casting - true centrifugal casting - semicentrifugal casting - centrifuging


Centrifugal casting results in denser and cleaner metal as heavier metal is thrown to parts of the mould away from the centre of rotation and the lighter impurities like slag, oxides and inclusion are squeezed out to the centre.


The castings produced have a close grain structure, good detail, high density and superior mechanical properties. Elaborate gating and risering systems are not required as very simple systems will do the job. There is also a considerable saving of material.


01-centrifugal casting - centrifuging process - centrifugal casting techniques


Types of centrifugal casting:


Centrifugal casting can be divided into three categories namely true centrifugal casting, semi centrifugal casting and centrifuging.


True centrifugal casting:


The true centrifugal method of casting is used to produce hollow castings with a round hole. The characteristic feature of this process is that the hole is produced by the centrifugal force alone and no cores are used.

01-true centrifugal casting-hollow castings


The mould is rotated about the axis of the hole with the axis held horizontal, inclined or vertical. The outside surface of the job may be round, square, hexagonal etc. and should be symmetrical with the whole axis. The central hole should be round to be formed without cores.


Long castings like cast iron soil pipes are cast with the moulds rotated about a horizontal axis. Castings with relatively short lengths are poured with moulds rotated about an inclined or vertical axis. Rotation about the vertical or inclined axis is convenient but the central hole produced will be slightly parabolic with smaller diameter at the bottom because the metal has a tendency to settle down due to gravity. The speed of rotation for true centrifugal casting should be high enough to hold the metal on to the mould wall till it solidifies. A low speed of rotation would result in raining or slipping of the metal inside the mould. Too large a speed of rotation on the other hand may result in internal stresses and possible hot tears. A speed which would provide a centrifugal force of 60 to 75 times the force of gravity on horizontal moulds and 100 times force of gravity for vertical moulds is found to be suitable. The moulds used for the process may be metal moulds or refractory or sand lined moulds. Common products produced by true centrifugal casting include pipes, oil engine cylinders, piston ring stock, gear blank stock, bearing bushes and the like.



Semi-centrifugal casting:


In semi-centrifugal casting process no attempt is made to produce a hole without a core. The centrifugal force resulting from rotation of the mould is used to properly feed the casting to produce a close grained clean casting.

01-Semi centrifugal casting-gear blanks-wheel production


The process is suitable for large axis-symmetrical castings like gear blanks, fly wheels and track wheels. Any hole round or otherwise is made with the use of a core. The mould is clamped to a turn table with casting axis along the axis of rotation.


The metal is poured along or near the axis to feed the points farthest from the axis of rotation under pressure. If made solid the central portion tends to be porous and with inclusion which are removed in subsequent machining.


01-fly wheel production-centrifugal casting process - track wheel manufacturing method


Centrifuging:


Centrifuging or centrifuge casting is employed to force metal under pressure into moulds of small castings or castings not symmetrical about any axis of rotation. The moulds are made around a central axis of rotation, to balance each other.

01-centrifuge casting-multicavity mould-centrifuging

The metal is poured along this axis of rotation through a central sprue and made to flow into mould cavities through radial ingates cut on the mould interface. Centrifuging helps in proper feeding of castings resulting in clean, close grained castings.

Share this:

ABOUTME

Hi all. This is deepak from Bthemez. We're providing content for Bold site and we’ve been in internet, social media and affiliate for too long time and its my profession. We are web designer & developer living India! What can I say, we are the best..

Post a Comment
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.

Labels

LEKULE TV EDITORIALS ARTICLES DC ROBOTICS DIGITAL SEMICONDUCTORS GENERATOR AC EXPERIMENTS MANUFACTURING-ENGINEERING REFERENCE FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT TRANSDUCER & SENSOR VIDEO ARDUINO RENEWABLE ENERGY AUTOMOBILE TEARDOWN SYNCHRONOUS GENERATOR DIGITAL ELECTRONICS ELECTRICAL DISTRIBUTION CABLES AUTOMOTIVE MICROCONTROLLER SOLAR PROTECTION DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES WEARABLES CAMERA TECHNOLOGY COMMUNICATION GENERATION BATTERIES FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE CONTROL SYSTEM NUCLEAR ENERGY SMATRPHONE FILTER`S POWER BIOGAS BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS ENERGY SOURCE PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD BLUETOOTH C PROGRAMMING HOME AUTOMATION HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY COMPUTER DEFECE & MILITARY FLUORESCENT LAMP INDUSTRIAL ROBOTICS ANDROID ELECTRICAL DRIVES GROUNDING SYSTEM CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS USB ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS CONTROL MOTION ELECTRICAL LAWS INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES APPS & SOFTWARE BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RECTIFIER AND CONVERTERS RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS DC MOTOR DRIVES ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS WIRELESS BUILDING SERVICES COMPRESSOR CRANES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION INDUSTRIAL DRIVES LAPTOP SCIENCE THERMOCOUPLE TRIGONOMENTRY REFERENCE UART oscilloscope BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING ELECTROMECHANICAL FEATURED FILTER DESIGN HARDWARE JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER VALVE COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF