A generator is subjected to electrical traces imposed on the insulation of the machine, mechanical forces acting on the various parts of the machine, and temperature rises. These are the main factors which make protection necessary for the generator or alternator. Even when properly used, a machine in its perfect running condition does not only maintain its specified rated performance for many years, but it does also repeatedly withstand certain excess of over load. Hence, preventive measures must be taken against overloads and abnormal conditions of the machine so that it can serve safely. Despite of sound, efficient design, construction, operation, and preventive means of protection, the risk of that fault cannot be completely eliminated from any machine. The devices used in generator protection, ensure the fault, made dead as quickly as possible. An electrical generator can be subjected to either internal fault or external fault or both. The generators are normally connected to an electrical power system, hence any fault occurred in the power system should also be cleared from the generator as soon as possible otherwise it may create permanent damage in the generator. The number and variety of faults occur in generator, are huge. That is why generator or alternator is protected with several protective schemes. The generator protection is of both discriminative and non-discriminative type. Great care is to be taken in coordinating the systems used and the settings adopted, so that the sensitive, selective and discriminative generator protection scheme is achieved.
1. Protective relays to detect faults occurring outside the generator. 2. Protective relays to detect faults occurring inside the generator.
Other than protective relays, associated directly with the generator and its associated transformer, there are lightning arrestors, over speed safe guards, oil flow devises and temperature measuring devises for shaft bearing, stator winding, transformer winding and transformer oil etc. Some of these protective arrangement are of non-trip type i.e. they only generate alarm during abnormalities. But the other protective schemes ultimately operate master tripping relay of the generator. This should be noted that no protective relay can prevent fault, it only indicates and minimises the duration of the fault to prevent high temperature rise in the generator otherwise there may be permanent damage in it. It is desirable to avoid any undue tresses in the generator, and for that it is usual practice to install surge capacitor or surge divertor or both to reduce the effects of lightning and other voltage surges on the machine.
The protection schemes usually applied to the generator are discussed here below in brief.
1. Potentiometer method 2. AC injection method 3. DC injection method
Types of Generator Protection
The various forms of protection applied to the generator can be categorized into two manners,1. Protective relays to detect faults occurring outside the generator. 2. Protective relays to detect faults occurring inside the generator.
Other than protective relays, associated directly with the generator and its associated transformer, there are lightning arrestors, over speed safe guards, oil flow devises and temperature measuring devises for shaft bearing, stator winding, transformer winding and transformer oil etc. Some of these protective arrangement are of non-trip type i.e. they only generate alarm during abnormalities. But the other protective schemes ultimately operate master tripping relay of the generator. This should be noted that no protective relay can prevent fault, it only indicates and minimises the duration of the fault to prevent high temperature rise in the generator otherwise there may be permanent damage in it. It is desirable to avoid any undue tresses in the generator, and for that it is usual practice to install surge capacitor or surge divertor or both to reduce the effects of lightning and other voltage surges on the machine.
The protection schemes usually applied to the generator are discussed here below in brief.
Protection against Insulation Failure
The main protection provided in the stator winding against phase to phase or phase to earth fault, is longitudinal differential protection of generator. Second most important protection scheme for stator winding is inter turn fault protection. This type of protection was considered unnecessary in previous days because breakdown of insulation between points in the same phase winding, contained in the same slot, and between which a potential difference exists, very rapidly changes into an earth fault, and then it is detected by either the stator differential protection or the stator earth fault protection. A generator is designed to produce relatively high voltage in comparison to its output and which therefore contains a large number of conductors per slot. With increasing size and voltage of the generator, this form of protection is becoming essential for all large generating unit.Stator Earth Fault Protection
When the stator neutral is earthed through a resistor, a current transformer is mounted in the neutral to earth connection. Inverse Time Relay is used across the CT secondary when the generator is connected directly to the bus bar. In case of generator feeds power via a delta star transformer, an Instantaneous Relay is used for the same purpose. In the former case, the earth faults relay is required to be graded with other fault relays in the system. This is the reason why Inverse Time Relay is used in this case. But in the letter case, the earth fault loop is restricted to the stator winding and primary winding of the transformer, hence, there is no need of grading or discrimination with other earth fault relays in the system. That is why Instantaneous Relay is preferable in the case.Rotor Earth Fault Protection
A single earth fault does not create any major problem in the generator but if the second earth fault is occurred, however, part of the field winding will become short-circuited and resulting and unbalanced magnetic field in the system and consequently there may be major mechanical damage to the bearings of the generated. There are three methods available to detect the types of fault in the rotor. The methods are1. Potentiometer method 2. AC injection method 3. DC injection method
No comments:
Post a Comment