Like other inductive transducers, this transducer
is also used for converting a linear motion into an electrical signal.
The basic construction of an LVDT is explained and shown in the figure
below.
Construction
The device consists of a primary winding
(P) and two secondary windings named S1 and S2. Both of them are wound
on one cylindrical former, side by side, and they have equal number of
turns. Their arrangement is such that they maintain symmetry with either
side of the primary winding (P). A movable soft iron core is placed
parallel to the axis of the cylindrical former. An arm is connected to
the other end of the soft iron core and it moves according to the
displacement produced.
Working
As shown in the figure above, an ac
voltage with a frequency between (50-400) Hz is supplied to the primary
winding. Thus, two voltages VS1 and VS2 are obtained at the two
secondary windings S1 and S2 respectively. The output voltage will be
the difference between the two voltages (VS1-VS2) as they are combined
in series. Let us consider three different positions of the soft iron
core inside the former.
- Null Position – This is also called the central position as the soft iron core will remain in the exact center of the former. Thus the linking magnetic flux produced in the two secondary windings will be equal. The voltage induced because of them will also be equal. Thus the resulting voltage VS1-VS2 = 0.
- Right of Null Position – In this position, the linking flux at the winding S2 has a value more than the linking flux at the winding S1. Thus, the resulting voltage VS1-VS2 will be in phase with VS2.
- Left of Null Position – In this position, the linking flux at the winding S2 has a value less than the linking flux at the winding S1. Thus, the resulting voltage VS1-VS2 will be in phase with VS1.
From the working it is clear that the
difference in voltage, VS1-VS2 will depend on the right or left shift of
the core from the null position. Also, the resulting voltage is in
phase with the primary winding voltage for the change of the arm in one
direction, and is 180 degrees out of phase for the change of the arm
position in the other direction.
The magnitude and displacement can be
easily calculated or plotted by calculating the magnitude and phase of
the resulting voltage.
The graph above shows the plot between
the resulting voltage or voltage difference and displacement. The graph
clearly shows that a linear function is obtained between the output
voltage and core movement from the null position within a limited range
of 4 millimeter.
The displacement can be calculated from
the magnitude of the output voltage. The output voltage is also
displayed on a CRO or stored in a recorder.
Advantages
1. Maintains a linear relationship
between the voltage difference output and displacement from each
position of the core for a displacement of about 4 millimeter.
2. Produces a high resolution of more than 10 millimeter.
3.Produces a high sensitivity of more than 40 volts/millimeter.
4. Small in size and weighs less. It is rugged in design and can also be assigned easily.
5. Produces low hysteresis and thus has easy repeatability.
Disadvantages
1. The whole circuit is to be shielded as the accuracy can be affetced by external magnetic field.
2. The displacement may produce vibrations which may affect the performance of the device.
3. Produces output with less power.
4. The efficiency of the device is
easily affected by temperature. An increase in temperature causes a
phase shift. This can be decreased to a certain extent by placing a
capacitor across either one of the secondary windings.
5. A demodulator will be needed to obtain a d.c output.
No comments:
Post a Comment