Rin = βRE
It is a bit more complicated for the common-emitter circuit. We need to know the internal emitter resistance rEE. This is given by:
rEE = KT/IEm
where:
K=1.38×10-23 watt-sec/oC, Boltzman's constant
T= temperature in Kelvins ≅300.
IE = emitter current
m = varies from 1 to 2 for Silicon
RE ≅ 0.026V/IE = 26mV/IE
Thus, for the common-emitter circuit Rin is
Rin = βrEE
As an example the input resistance of a, β = 100, CE configuration biased at 1 mA is:
rEE = 26mV/1mA = 0.26Ω
Rin = βrEE = 100(26) = 2600Ω
Moreover, a more accurate Rin for the common-collector should have included Re'
Rin = β(RE + rEE)
This equation (above) is also applicable to a common-emitter configuration with an emitter resistor.
Input impedance for the common-base configuration is Rin = rEE.
The high input impedance of the common-collector configuration matches high impedance sources. A crystal or ceramic microphone is one such high impedance source. The common-base arrangement is sometimes used in RF (radio frequency) circuits to match a low impedance source, for example, a 50 Ω coaxial cable feed. For moderate impedance sources, the common-emitter is a good match. An example is a dynamic microphone.
The output impedances of the three basic configurations are listed in Figure below. The moderate output impedance of the common-emitter configuration helps make it a popular choice for general use. The Low output impedance of the common-collector is put to good use in impedance matching, for example, tranformerless matching to a 4 Ohm speaker. There do not appear to be any simple formulas for the output impedances. However, R. Victor Jones develops expressions for output resistance. [RVJ]

Amplifier characteristics, adapted from GE Transistor Manual, Figure 1.21.[GET]


No comments:
Post a Comment