LVDS: High-Speed, Low-Power, Robust Data Transfer

Typical 3.3 V or 5 V logic signals are generally adequate for short-distance chip-to-chip (i.e., intraboard) communication, even with clock frequencies in the megahertz range. A well-designed PCB can be considered a fairly protected environment, where digital signals are not likely to experience severe degradation due to noise or parasitic reactance.

But the situation changes when digital data, especially high-speed data, leaves this protected environment—e.g., when it must travel to a separate portion of the system through long cables or intense EMI. Even intraboard communication can become problematic when strong noise sources are present or when very high data rates (e.g., in the hundreds of megabits per second) are required.

From One Wire to Two Wires

The general remedy in such cases is to move from single-ended logic to differential signaling. RS-422/485 is an excellent interface, but it is not optimized for high speed. Other options include current-mode logic (CML) and low-voltage positive emitter-coupled logic (LVPECL). But, in my experience, a more common choice is low-voltage differential signaling (LVDS).
LVDS is a standardized interface for high-speed, point-to-point digital communication. “Point-to-point” means one transmitter and one receiver; LVDS is not intended for facilitating communication between numerous devices in a system, but rather for rapidly and efficiently moving large amounts of data from one device to another.

The Signals

LVDS uses (you guessed it!) low-voltage-swing, differential signals, as follows:



The nominal common-mode voltage is 1.2 V, and the nominal voltage range for each signal in the differential pair is 150 mV above to 150 mV below the common-mode voltage. This means that each signal’s voltage is changing by only 300 mV—about an order of magnitude lower than the voltage swing of a single-ended 3.3 V logic signal.
Despite the small voltage difference between logic low and logic high, the benefits of differential signaling (in conjunction with twisted wires and shielded cables) allow LVDS to provide highly reliable communication.

Low-Voltage Benefits

Far from being merely a data-integrity concern, low-voltage-swing signaling saves power and increases speed:
  • Less voltage across the termination resistors reduces current, and lower supply voltages in general reduce power consumption (remember, CMOS power dissipation is proportional to VDD squared).
  • Voltage transitions cannot occur instantaneously; it takes time for a signal to move from one voltage to another, so less distance between logic low and logic high enables higher-frequency operation by reducing the time required for each logic transition.

 

Not Out of Reach

LVDS is a high-performance standard that can achieve data rates approaching, or maybe even exceeding, 1 gigabit per second (though speed must be reduced as cable length increases). But don’t be intimidated—an abundance of user-friendly integrated circuits makes LVDS a very approachable interface. It is not difficult to translate from standard logic to LVDS and back to standard logic using readily available LVDS drivers and receivers, and termination is straightforward:



LVDS can be particularly valuable when the device providing the to-be-translated signals (such as a microcontroller) is too slow to generate serial data at the desired frequency. In such cases you can use an LVDS serializer in conjunction with an LVDS deserializer—the former converts parallel standard-logic inputs to serial LVDS outputs, and the latter converts the serial LVDS data back into parallel standard-logic signals (this datasheet for a serializer/deserializer pair gives you an example of what I’m referring to).

 

Recap


LVDS offers high speed and low power, as well as convenient IC-based implementation. It’s a great alternative to single-ended logic when you need robust, high-bandwidth, point-to-point data transfer.
Previous
Next Post »
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.
Related Posts Plugin for WordPress, Blogger...

Label

KITAIFA NEWS KIMATAIFA MICHEZO BURUDANI SIASA TECHNICAL ARTICLES f HAPA KAZI TU. LEKULE TV EDITORIALS ARTICLES DC DIGITAL ROBOTICS SEMICONDUCTORS MAKALA GENERATOR GALLERY AC EXPERIMENTS MANUFACTURING-ENGINEERING MAGAZETI REFERENCE IOT FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT VIDEO ZANZIBAR YETU TRANSDUCER & SENSOR MITINDO ARDUINO RENEWABLE ENERGY AUTOMOBILE SYNCHRONOUS GENERATOR ELECTRICAL DISTRIBUTION CABLES DIGITAL ELECTRONICS AUTOMOTIVE PROTECTION SOLAR TEARDOWN DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS MICROCONTROLLER CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES CAMERA TECHNOLOGY GENERATION WEARABLES BATTERIES COMMUNICATION FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE NUCLEAR ENERGY CONTROL SYSTEM FILTER`S SMATRPHONE BIOGAS POWER TANZIA BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT cartoon CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR ENERGY SOURCE 555 TIMER CIRCUITS AUTOCAD C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY DEFECE & MILITARY FLUORESCENT LAMP HOME AUTOMATION INDUSTRIAL ROBOTICS ANDROID COMPUTER ELECTRICAL DRIVES GROUNDING SYSTEM BLUETOOTH CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR USB AUDIO BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS ELECTRICAL LAWS HMI[HUMANI INTERFACE MACHINES INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS CONTROL MOTION ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BASIC AC THEORY BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE APPS & SOFTWARE BATTERIES AND POWER SYSTEMS ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE RECTIFIER AND CONVERTERS SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS BUILDING SERVICES COMPRESSOR CRANES DC MOTOR DRIVES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION LAPTOP THERMOCOUPLE TRIGONOMENTRY REFERENCE UART WIRELESS BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING FILTER DESIGN HARDWARE INDUSTRIAL DRIVES JUNCTION FIELD-EFFECT TRANSISTORS NUCLEAR POWER VALVE WWE oscilloscope 3D TECHNOLOGIES COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER MATERIAL PID PUMP SCIENCE SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION FEATURED MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF