Understanding Quadrature Phase Shift Keying (QPSK) Modulation

This technical brief covers the basic characteristics of a digital modulation scheme known as quadrature phase shift keying.

In the world of wired electronics, analog signals exhibit continuous variations whereas digital signals assume (ideally) one of two discrete states. This distinction can be extended to systems that transmit data via electromagnetic radiation instead of electric current traveling through wires.
When used for analog signals, frequency modulation and amplitude modulation lead to continuous variations in the frequency or amplitude of a carrier wave. When modulation techniques are used for digital communication, the variations applied to the carrier are restricted according to the discrete information being transmitted.

Examples of common digital modulation types are OOK (on/off keying), ASK (amplitude shift keying), and FSK (frequency shift keying). These schemes cause the carrier to assume one of two possible states depending on whether the system must transmit a binary 1 or a binary 0; each discrete carrier state is referred to as a symbol.

Quadrature phase shift keying (QPSK) is another modulation technique, and it’s a particularly interesting one because it actually transmits two bits per symbol. In other words, a QPSK symbol doesn’t represent 0 or 1—it represents 00, 01, 10, or 11.
This two-bits-per-symbol performance is possible because the carrier variations are not limited to two states. In ASK, for example, the carrier amplitude is either amplitude option A (representing a 1) or amplitude option B (representing a 0). In QPSK, the carrier varies in terms of phase, not frequency, and there are four possible phase shifts.

We can intuitively determine what these four possible phase shifts should be: First we recall that modulation is only the beginning of the communication process; the receiver needs to be able to extract the original information from the modulated signal. Next, it makes sense to seek maximum separation between the four phase options, so that the receiver has less difficulty distinguishing one state from another. We have 360° of phase to work with and four phase states, and thus the separation should be 360°/4 = 90°. So our four QPSK phase shifts are 45°, 135°, 225°, and 315°.



(Note: The phase-shift-to-digital-data correspondence shown above is a logical though arbitrary choice; as long as the transmitter and receiver agree to interpret phase shifts in the same way, different correspondence schemes can be used.)
There’s another reason why it makes sense to choose 45°, 135°, 225°, and 315°: they are easily generated using I/Q modulation techniques because summing I and Q signals that are either inverted or noninverted results in these four phase shifts. The following table should clarify this:




Compared to modulation schemes that transmit one bit per symbol, QPSK is advantageous in terms of bandwidth efficiency. For example, imagine an analog baseband signal in a BPSK (binary phase shift keying) system. BPSK uses two possible phase shifts instead of four, and thus it can transmit only one bit per symbol. The baseband signal has a certain frequency, and during each symbol period, one bit can be transmitted. A QPSK system can use a baseband signal of the same frequency, yet it transmits two bits during each symbol period. Thus, its bandwidth efficiency is (ideally) higher by a factor of two.
Previous
Next Post »
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.
Related Posts Plugin for WordPress, Blogger...

Label

KITAIFA NEWS KIMATAIFA MICHEZO BURUDANI SIASA TECHNICAL ARTICLES f HAPA KAZI TU. LEKULE TV EDITORIALS ARTICLES DC DIGITAL ROBOTICS SEMICONDUCTORS MAKALA GENERATOR GALLERY AC EXPERIMENTS MANUFACTURING-ENGINEERING MAGAZETI REFERENCE IOT FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT VIDEO ZANZIBAR YETU TRANSDUCER & SENSOR MITINDO ARDUINO RENEWABLE ENERGY AUTOMOBILE SYNCHRONOUS GENERATOR ELECTRICAL DISTRIBUTION CABLES DIGITAL ELECTRONICS AUTOMOTIVE PROTECTION SOLAR TEARDOWN DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS MICROCONTROLLER CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES CAMERA TECHNOLOGY GENERATION WEARABLES BATTERIES COMMUNICATION FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE NUCLEAR ENERGY CONTROL SYSTEM FILTER`S SMATRPHONE BIOGAS POWER TANZIA BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT cartoon CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP ENERGY SOURCE FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY DEFECE & MILITARY FLUORESCENT LAMP HOME AUTOMATION INDUSTRIAL ROBOTICS ANDROID COMPUTER ELECTRICAL DRIVES GROUNDING SYSTEM BLUETOOTH CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR USB AUDIO BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS ELECTRICAL LAWS HMI[HUMANI INTERFACE MACHINES INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS CONTROL MOTION ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS APPS & SOFTWARE BASIC AC THEORY BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE RECTIFIER AND CONVERTERS SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS BUILDING SERVICES COMPRESSOR CRANES DC MOTOR DRIVES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION LAPTOP THERMOCOUPLE TRIGONOMENTRY REFERENCE UART WIRELESS BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING FILTER DESIGN HARDWARE INDUSTRIAL DRIVES JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER SCIENCE VALVE WWE oscilloscope 3D TECHNOLOGIES COLOR CODES ELECTRIC TRACTION FEATURED FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER MATERIAL PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF