A Need-to-Know on Micron’s Hybrid Memory Cube Technology

With the increasing demand of high memory bandwidth in fields like Digital Signal Processing and ASIC Prototyping, a memory solution with a high bandwidth data gateway could be the answer we've been waiting for.

The Hybrid Memory Cube (HMC) is the most recently developed memory device, featuring an entirely new category of high performance memory and delivering unprecendented system performance and bandwidth. Micron’s HMC design combines advanced logic and DRAM layers into one optimized 3D package that leverages through-silicon via (TSV) technology. The high density nature of the HMC will enable next-generation networking. The HMC will also be instrumental in reducing the power consumption in supercomputing and data centers.



Micron's HMC-15G-SR

The problem of latency in memory devices, also known as the classic “memory wall,” was always seen as an insurmountable problem. Over time, the bandwidth of current DRAM modules has bottlenecked system performance in the world of high performance computing. HMC is the long-awaited solution to these conventional memory problems. The high performance levels of the HMC have been instrumental in breaking the memory wall, delivering very high bandwidth and introducing an energy efficient memory system.



Theory of Operation

The HMC is built by creating a stack of heterogeneous die. Various application-specific logic is combined with a standard DRAM building block. Each of the 1 GB DRAM layers used in the stack is optimized for concurrency and high bandwidth. Memory is organized into functionally and operationally independent vaults. Each vault contains its own memory controller, also called the vault controller. The vault controller is responsible for managing all memory reference operations within that vault.



Stack of heterogeneous die

The device uses fine pitch copper pillar interconnects. The logic die uses several high-performance transistors for DRAM sequencing, refresh, data routing, error correction and high-speed interconnects to the host. The use of TSVs empowers thousands of connections in the vertical direction (Z- direction).

Diagram showing fine pitch copper interconnect



Due to TSV’s short interconnect length, high interconnect density, and small footprint, it is an essential element for both wafer-level 3D integration and packaging-based 3D integration. Use of TSV enables lower latency, lower power, and superior electrical performances.




Diagram showing different layers and TSV connections


Device Performance


The use of through-silicon vias greatly reduces the distance data needs to travel, which results in improved power. It's been tested that an HMC device uses 70% less energy per bit than existing memories like DDR2 and DDR3. In HMC technology, the host memory controller no longer needs to perform refresh operations, as it's controlled by the vault controller.
The Micron Hybrid Memory Cube has several key benefits over using the DDR3 module: the HMC provides up to 15 times the bandwidth of the DDR3 module and it consumes up to 70% less power per bit rather than the existing memory. The HMC technology has had phenomenol success in reducing the memory footprint. It takes 90% less space compared to other RDIMMs currently in use. Since it has logic layer flexibility, it can be tailored to multiple platforms, which increases the scope of applications of HMCs. HMCs massive parallelism has proved instrumental in decreasing the system latency. Its RAS features enable embedded error checking and correction capabilities, which makes the HMC a more resilient memory system compared to DDR3 modules.

Here's a direct comparison of HMCs and DRAM based on memory interaction:

No.Dynamic Random Access Memory (DRAM)Hybrid Memory Cube (HMC)
1Multi-core CPU direct connection to DRAM-specific busesDirect connect to HMC logic chip via abstracted high-speed interface
2Complex scheduler, deep queues, high reordering especially writesNo need for complex scheduler, just thin arbiter, shallow queues
3Result is conservative, evolutionary, uncreative, slow performance growthLogic layer flexibility allows HMC cubes to be designed for multiple platforms and applications without changing the high-volume DRAM.


Technology comparison of 1st generation HMCs with available DDR modules



Market



Micron started shipping HMCs at the end of September, 2014. Some of the major developing members as well as customers of the Micron’s HMC are Altera, ARM, IBM, Open-Silicon Inc., Samsung Electronics Co., Semtech, SK Hynix and Xilinx. Along with these eight industry leaders, there are over 150 additional organizations pursuing adopter status. Micron has not yet disclosed the price, but it claims that the Hybrid Memory Cube’s increased density per bit and the decreased form factor lowers the total cost of ownership by allowing more memory into each computer and using 90% less space compared to currently used RDIMMs in the industry. It's too soon to tell if this will actually be a needed seachange, but early outlooks seem promising.
Previous
Next Post »
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.
Related Posts Plugin for WordPress, Blogger...

Label

KITAIFA NEWS KIMATAIFA MICHEZO BURUDANI SIASA TECHNICAL ARTICLES f HAPA KAZI TU. LEKULE TV EDITORIALS ARTICLES DC DIGITAL ROBOTICS SEMICONDUCTORS MAKALA GENERATOR GALLERY AC EXPERIMENTS MANUFACTURING-ENGINEERING MAGAZETI REFERENCE IOT FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT VIDEO ZANZIBAR YETU TRANSDUCER & SENSOR MITINDO ARDUINO RENEWABLE ENERGY AUTOMOBILE SYNCHRONOUS GENERATOR ELECTRICAL DISTRIBUTION CABLES DIGITAL ELECTRONICS AUTOMOTIVE PROTECTION SOLAR TEARDOWN DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS MICROCONTROLLER CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES CAMERA TECHNOLOGY GENERATION WEARABLES BATTERIES COMMUNICATION FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE NUCLEAR ENERGY CONTROL SYSTEM FILTER`S SMATRPHONE BIOGAS POWER TANZIA BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT cartoon CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP ENERGY SOURCE FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY DEFECE & MILITARY FLUORESCENT LAMP HOME AUTOMATION INDUSTRIAL ROBOTICS ANDROID COMPUTER ELECTRICAL DRIVES GROUNDING SYSTEM BLUETOOTH CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR USB AUDIO BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS ELECTRICAL LAWS HMI[HUMANI INTERFACE MACHINES INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS CONTROL MOTION ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS APPS & SOFTWARE BASIC AC THEORY BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE RECTIFIER AND CONVERTERS SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS BUILDING SERVICES COMPRESSOR CRANES DC MOTOR DRIVES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION LAPTOP THERMOCOUPLE TRIGONOMENTRY REFERENCE UART WIRELESS BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING FILTER DESIGN HARDWARE INDUSTRIAL DRIVES JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER SCIENCE VALVE WWE oscilloscope 3D TECHNOLOGIES COLOR CODES ELECTRIC TRACTION FEATURED FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER MATERIAL PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF