Texas Instruments Releases Reference Design for a 99% Efficient GaN Inverter Power Stage

Texas Instruments has released a new power stage reference design, TIDA-00915, that claims up to 99% efficiency.

The reference design, released on Tuesday, is for a three-phase high-frequency GaN inverter. It's built around TI's LMG3410 600 V 12-A gallium nitride (GaN) power module. Specifically, it's built around six of these power modules.





Here are some pertinent specs for the LMG3410, which was released last year:
  • Integrated 70-mΩ, 600-V GaN transistor and driver
  • Single package
  • Up to 1 MHz steady-state operation
  • 20-ns typical propagation delay
  • Operates from a single unregulated 12-V supply
  • Externally-adjustable drive strength for switching performance and EMI control (supports 25 to 100 V/ns)
  • Integrated DC-DC converter for negative drive voltage
  • UVLO protection, over-current protection, over-temperature protection
  • High edge-rate tolerance
The inverter is designed to drive 200-V AC servo motors with 2 kWPEAK. The three stated applications for this reference design are for motor integrated drive, servo drives, and robotics.
It features the fast switching ability of GaN (more on that below)—less than 25 ns.

What's Gallium Nitride (GaN)?

One of the noteworthy things about this reference design from TI is that it utilizes gallium nitride. GaN is a semiconductor material that is—at least in theory—giving silicon a run for its money.
GaN is an extremely hard substance with a Wurtzite crystalline structure. Its wide band gap of 3.4 eV (compared to silicon's 1.12 eV band gap) gives it special properties that have piqued the interest of semiconductor developers. It's prized for its performance in high-power and high-temperature applications, but it's gained the most attention for its efficiency in power conversion and high switching speeds.


A gallium nitride crystal

Its applications range from optoelectronics to photovoltaics to aerospace—and it's also the substrate used in violet laser diodes, which are used in Blu-ray discs. GaN has even been used as a material for nanotubes for use in nanotech.

Over the past decade, GaN has gained traction among major component manufacturers as a semiconducting material used in transistors. Besides TI, several other companies, including Dialog Semiconductor, NXP, and ON Semiconductor, have also entered the GaN realm. Companies are also increasingly offering eGaN ("enhancement-mode") products that grow a thin layer of GaN on a silicon wafer.

Leading the charge is Alex Lidow of EPF (Efficient Power Conversion), who is something of a GaN evangelical. In an article published by IEEE Xplore this March, Lidow claims that GaN has proved itself to allow superior switching and efficiency. He says that GaN has been responsible for the boom in many of the most popular technologies today, including LiDAR and wireless charging. According to Lidow, the final barrier protecting the silicon industry is a lack of confidence in GaN.


Representation of a GaN transistor. Image courtesy of Efficient Power Conversion

Texas Instruments, for their part, asserts that their GaN power module allows 5x faster switching compared to silicon FETs. They also boast that this optimized switch performance allows for less power loss.

99% Power Efficiency

The design reports 98% efficiency at 100kHz PWM, a setting they appear to recommend as it reportedly improves torque ripple with low-inductance motors.

The big news, of course, is that it also reports 99% efficiency at 24 kHz PWM, with reduced heat sink size (allowing more space on a board for new features). That's awfully close to the physically impossible 100% efficiency. In fact, in their announcement of the reference design, they actually say "greater than 99 percent efficiency".


Converter efficiency, given PWM rate. Image courtesy of Texas Instruments

Clearly, TI did testing to come to these impressive figures but it would still be interesting to see this design in action.


Check out the reference design for yourself here for more information. Let us know your experiences with the TIDA-00915 or any of TI's GaN reference designs in the comments below.
Previous
Next Post »
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.
Related Posts Plugin for WordPress, Blogger...

Label

KITAIFA NEWS KIMATAIFA MICHEZO BURUDANI SIASA TECHNICAL ARTICLES f HAPA KAZI TU. LEKULE TV EDITORIALS ARTICLES DC DIGITAL ROBOTICS SEMICONDUCTORS MAKALA GENERATOR GALLERY AC EXPERIMENTS MANUFACTURING-ENGINEERING MAGAZETI REFERENCE IOT FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT VIDEO ZANZIBAR YETU TRANSDUCER & SENSOR MITINDO ARDUINO RENEWABLE ENERGY AUTOMOBILE SYNCHRONOUS GENERATOR ELECTRICAL DISTRIBUTION CABLES DIGITAL ELECTRONICS AUTOMOTIVE PROTECTION SOLAR TEARDOWN DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS MICROCONTROLLER CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES CAMERA TECHNOLOGY GENERATION WEARABLES BATTERIES COMMUNICATION FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE NUCLEAR ENERGY CONTROL SYSTEM FILTER`S SMATRPHONE BIOGAS POWER TANZIA BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT cartoon CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP ENERGY SOURCE FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY DEFECE & MILITARY FLUORESCENT LAMP HOME AUTOMATION INDUSTRIAL ROBOTICS ANDROID COMPUTER ELECTRICAL DRIVES GROUNDING SYSTEM BLUETOOTH CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR USB AUDIO BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS ELECTRICAL LAWS HMI[HUMANI INTERFACE MACHINES INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS CONTROL MOTION ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS APPS & SOFTWARE BASIC AC THEORY BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE RECTIFIER AND CONVERTERS SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS BUILDING SERVICES COMPRESSOR CRANES DC MOTOR DRIVES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION LAPTOP THERMOCOUPLE TRIGONOMENTRY REFERENCE UART WIRELESS BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING FILTER DESIGN HARDWARE INDUSTRIAL DRIVES JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER SCIENCE VALVE WWE oscilloscope 3D TECHNOLOGIES COLOR CODES ELECTRIC TRACTION FEATURED FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER MATERIAL PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF