Implantable Silicon Chips Introduce a New Age of Haptic Feedback in Prosthetics

Prosthetics have come a long way from the wood and iron models of centuries past. With technological advances, prosthetics can now give the wearer a new sense of control with responses to muscle movements and nerve signals. Researchers are now working on prosthetics that can perform fine motor skills.
 
Prosthetics have been around for much of human history. One of the oldest recorded prosthetics is a big toe, dated around 950-710 B.C.E. During the 15th century, knights were able to continue their fighting careers with handmade iron prosthetics. From these beginnings, steel, wood, plastic, and carbon fiber have taken over.


Humble beginnings: an early human prosthetic toe. Image courtesy of Jon Bodsworth.


Iron arms helped knights of medieval times continue their careers. Image courtesy of Wikipedia

Whether the prosthetics are for aesthetic purposes or a physical necessity to enable the wearer to continue moving, working, and playing as normal, researchers are constantly looking for ways to improve upon existing designs. Often, the research centers around new textiles, such as graphene, and new capabilities made possible by flexible chips and small motors.

Improving Prosthetic Ability and Reducing Costs

Prensilia created the IH2 Azzurra series (PDF) robotic hand that can be connected to a prosthetic arm. The IH2 Azzurra series are human-sized anthropomorphic hands with embedded actuation, as well as sensory and control systems to replicate real human hand movements. The hand communicates through an RS232 or USB interface and has embedded 1kHz servo-control loops to enable further customization.

For some, however, making a working prosthetic isn't enough. The cost of a prosthetic can run into the tens of thousands and no prosthetic lasts forever. In 2013, Robohand created and released a 3D printable robotic hand with open-source files on Thingiverse. The cost runs around $1,000 USD to create the prosthetic, a fraction of the cost of other prosthetic options.


A completed 3D printed Robohand. Image courtesy Robohand.

They've made hundreds of prosthetics since 2013 with printable aluminum and medical grade hardware and splinting material. All 3D printing designs are available for makers who want to try printing one on their own.

Improving Control with Implantable Chips

This month, imec introduced an implantable, thin-silicon chip for intuitive prosthetics, created in tandem with researchers from the University of Florida’s IMPRESS (Implantable Multimodal Peripheral Recording and Stimulation System) program. The team approached the project with the goal of creating a close-loop system for future prosthetics technology. Recent advancements in prosthetics have given the wearer the ability to grip and manipulate objects—but imec wants to take it a step further by giving the wearer different stimulations and sensations.

The prototype is an ultrathin chip with a bicompatible, hermetic, and flexible packaging. It also includes 64 electrodes (with the possibility of 128). It's this high number of electrodes that allows stimulation and recording.

A needle attached to the chip allows the package to be inserted and attached inside a nerve bundle. By comparison, current technology wraps around a nerve bundle rather than being inserted. Inserting the electrode directly into the nerve bundle will increase the wearer's control over their prosthetic hand or arm.

“A new biocompatible chip encapsulation technology is used, based on the stacking of nanolayers with superior diffusion barrier properties, alternating with very thin polymer layers with excellent mechanical behavior,” explains Maaike Op de Beeck, program manager at imec. “The final result is an ultrathin flexible electronic device with a thickness comparable to that of a human hair, hence ultimately suitable for minimally invasive implantation.”


imec's new ultrathin (35µm) chip. Image courtesy of imec.

Rizwan Bashirullah is an associate professor of Electrical and Computer Engineering at the University of Florida and director of the IMPRESS program. According to him, “this effort aims to create such new peripheral nerve interfaces with greater channel count, electrode density, and information stability, enabled largely by imec’s technological innovation.”

Researchers continue to explore advances in prosthetics in no small part because they can help give the wearer back a sense of autonomy and normalcy. Technological advances ensure continued progression in prosthetic ability.
Previous
Next Post »
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.
Related Posts Plugin for WordPress, Blogger...

Label

KITAIFA NEWS KIMATAIFA MICHEZO BURUDANI SIASA TECHNICAL ARTICLES f HAPA KAZI TU. LEKULE TV EDITORIALS ARTICLES DC DIGITAL ROBOTICS SEMICONDUCTORS MAKALA GENERATOR GALLERY AC EXPERIMENTS MANUFACTURING-ENGINEERING MAGAZETI REFERENCE IOT FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT VIDEO ZANZIBAR YETU TRANSDUCER & SENSOR MITINDO ARDUINO RENEWABLE ENERGY AUTOMOBILE SYNCHRONOUS GENERATOR ELECTRICAL DISTRIBUTION CABLES DIGITAL ELECTRONICS AUTOMOTIVE PROTECTION SOLAR TEARDOWN DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS MICROCONTROLLER CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES CAMERA TECHNOLOGY GENERATION WEARABLES BATTERIES COMMUNICATION FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE NUCLEAR ENERGY CONTROL SYSTEM FILTER`S SMATRPHONE BIOGAS POWER TANZIA BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT cartoon CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP ENERGY SOURCE FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY DEFECE & MILITARY FLUORESCENT LAMP HOME AUTOMATION INDUSTRIAL ROBOTICS ANDROID COMPUTER ELECTRICAL DRIVES GROUNDING SYSTEM BLUETOOTH CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR USB AUDIO BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS ELECTRICAL LAWS HMI[HUMANI INTERFACE MACHINES INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS CONTROL MOTION ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS APPS & SOFTWARE BASIC AC THEORY BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE RECTIFIER AND CONVERTERS SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS BUILDING SERVICES COMPRESSOR CRANES DC MOTOR DRIVES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION LAPTOP THERMOCOUPLE TRIGONOMENTRY REFERENCE UART WIRELESS BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING FILTER DESIGN HARDWARE INDUSTRIAL DRIVES JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER SCIENCE VALVE WWE oscilloscope 3D TECHNOLOGIES COLOR CODES ELECTRIC TRACTION FEATURED FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER MATERIAL PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF