Hello

Welcome lekule blog

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation.
together in the world. #lekule86
Join us on

NASA’s New High-Temperature Components Could Enable Missions to Venus

NASA engineers are creating ICs that can withstand extreme temperatures and pressures not found on Earth. Venus's harsh environment puts electronics to their toughest test yet.

Evolving electronic components are allowing us to explore to some of the most inhospitable places, from the edge of space to the deepest oceans. However, the surface of Venus seems to be one of the most difficult places to survive and only a handful of pictures of this harsh environment exist. To change this, NASA has developed ICs that can survive just a bit longer–in planetary exploration, every second counts!

Boldly Go Where No Chip Has Gone Before

Space, the final frontier. These are the voyages of the IC 8086, but its bold mission to Venus would not last more than five minutes thanks to the unforgiving environment there. Imagine a place that is always on fire. The air is crushingly thick with poisonous gases and the ground, itself, is sharp. It's a vivid description of hell, but it's also a decent interpretation of Venus.
Despite being further away from the sun than Mercury, Venus is the hottest planet with a daytime temperature of 462 degrees Celsius. The atmosphere is thick with carbon dioxide and sulphuric acid while having an atmospheric pressure of 92 bar at the surface (92 times that of the earth). In fact, the air pressure is so massive that it is the equivalent of being at a depth of 1km in the ocean (which would instantly crush a human if exposed).


The surface of Venus. Lovely for a death trap. Image courtesy of NASA/JPL

With this hellish thought, how do modern components cope in such a place? The short answer is that they don't.
Modern components simply cannot survive on the surface of Venus. Commercial parts are typically rated between 0°C and 70°C while industrial temperature ranges are typically -40°C to 125°C. See the issue? The surface of Venus typically sits above 400°C and has even been known to reach as high as 500°C, which would destroy any circuit in a very short amount of time.
So how can we expect to send probes to the surface of Venus and have them survive long enough to send information?
Believe it or not, a team from the Soviet Union did just this during the Cold War with their Verena mission which included the landing of several probes on the surface of Venus. The probes, themselves, did not survive for more than an hour after landing but were able to send back images of the surface revealing lava patties and rocks.


One of the few surface photos of Venus. Image in the public domain, accessed via the UCL Mathematics and Physical Sciences Flickr

NASA Says “Shoot To Chill”

To overcome the challenges that Venus presents, NASA has created semiconductor ICs that can survive Venus's temperatures for up to 500 hours.
NASA's Glenn Research Centre-based team tested two of these long-duration ICs in temperatures of 480°C (which were originally designed for jet engines) for 521 hours without failure. The test was devised after the same research group created 4h-SiC JFET integrated circuits with ceramic packaging that remained functional for over 41.7 days at 500 °C. However, this first test was conducted in Earth-atmosphere testing; therefore requiring the creation of a chamber that simulated the atmosphere of Venus (PDF). Using the same designed semiconductors as in the first test in this chamber, the time of functionality decreased by around half; however, this timespan remains a very productive window.

“With further technology maturation, such SiC IC electronics could drastically improve Venus lander designs and mission concepts, fundamentally enabling long-duration enhanced missions to the surface of Venus.” – Phil Neudeck, NASA

As a bonus, such ICs in missions to Venus not only have the benefit of surviving for longer periods but also reducing the overall weight of the probe (which, in turn, reduces the cost of sending a probe). So how is the weight reduced? Remember how the team from the Soviet Union landed probes on the surface of Venus? This was only possible because the probe had many pressure containment cases and plenty of cooling systems just to keep the electronics working for as long as possible, thus increasing the weight of the whole contraption significantly. A probe that is less affected by the heat will not need such temperature management (or at least not as much as the Venere probes).


The Venus landers had many bulky parts and cooling systems just to survive for an hour. Image via NASA

This reduced weight is a game-changer, especially when every moment of data captured on Venus is valuable. Even a probe that only survives a matter of days could be pivotal in changing our understanding of our neighbor planet. Advances in hardware are key to extending probe life. According to the researchers, "further-developed SiC JFET ICs will play a mission-enabling role in the first landers to return weeks of important science data from the surface of Venus."

Summary

Integrated circuits that can withstand harsher environments allows for us to constantly push the barriers of exploration and human understanding. It may not be long before we can start to explore deeper in our own planet's core or even in the atmosphere of the sun, which still holds many mysteries.

Share this:

ABOUTME

Hi all. This is deepak from Bthemez. We're providing content for Bold site and we’ve been in internet, social media and affiliate for too long time and its my profession. We are web designer & developer living India! What can I say, we are the best..

Post a Comment
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.

Labels

LEKULE TV EDITORIALS ARTICLES DC ROBOTICS DIGITAL SEMICONDUCTORS GENERATOR AC EXPERIMENTS MANUFACTURING-ENGINEERING REFERENCE FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT TRANSDUCER & SENSOR VIDEO ARDUINO RENEWABLE ENERGY AUTOMOBILE TEARDOWN SYNCHRONOUS GENERATOR DIGITAL ELECTRONICS ELECTRICAL DISTRIBUTION CABLES AUTOMOTIVE MICROCONTROLLER SOLAR PROTECTION DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES WEARABLES CAMERA TECHNOLOGY COMMUNICATION GENERATION BATTERIES FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE CONTROL SYSTEM NUCLEAR ENERGY SMATRPHONE FILTER`S POWER BIOGAS BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS ENERGY SOURCE PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD BLUETOOTH C PROGRAMMING HOME AUTOMATION HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY COMPUTER DEFECE & MILITARY FLUORESCENT LAMP INDUSTRIAL ROBOTICS ANDROID ELECTRICAL DRIVES GROUNDING SYSTEM CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS USB ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS CONTROL MOTION ELECTRICAL LAWS INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES APPS & SOFTWARE BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RECTIFIER AND CONVERTERS RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS DC MOTOR DRIVES ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS WIRELESS BUILDING SERVICES COMPRESSOR CRANES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION INDUSTRIAL DRIVES LAPTOP SCIENCE THERMOCOUPLE TRIGONOMENTRY REFERENCE UART oscilloscope BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING ELECTROMECHANICAL FEATURED FILTER DESIGN HARDWARE JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER VALVE COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF