Hello

Welcome lekule blog

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation.
together in the world. #lekule86
Join us on

Can Graphene OLEDs Bring Flexible Displays to the Consumer Market?

Recently researchers in South Korea have published their work on a new OLED stack in the NPG Asia Materials journal. This new OLED is not only ultra-flexible but is also extremely efficient. What does this mean for new OLEDs? Are we going to see more OLEDs in products?

The Generic OLED

OLEDs (Organic LEDs) are devices that can produce light using electrical current and electro-phosphorescent organic material.
OLEDs have many advantages over other display technology such as LCD and LED displays. These advantages include the use of no backlight (which allows for true black images), higher efficiencies (as no backlight is needed), thinner displays, faster refresh rates, and curved displays.
These OLEDs are made with individual layers that are sandwiched together:
  • Substrate – The outer layer that the OLED sits on (can be plastic, glass, etc.)
  • Anode – This is the positive electrode of the stack
  • Organic Layer – This sits on top of the anode and consists of organic molecules with either bonds or conductive polymers
  • Conductive Layer – This sits above the organic layer and is used to transport “holes” from the anode to the emissive layer
  • Emissive Layer – This layer contains the electro-phosphorescence organic molecules
  • Cathode – This is the negative electrode of the stack


Construction of a typical OLED. Image courtesy of Newhaven Display.

OLEDs can offer brilliant images with no need for backlights but they do have inherent problems.
Firstly, OLEDs require a rare material for the anode, indium-tin oxide (ITO), because of its electrical conductivity and optical transparency.

Secondly, indium-tin oxide is rather brittle and does not work well with flexible displays, making it non-ideal for a flexible display. OLEDs also have low external quantum efficiencies (EQE) and, as the output luminescence increases, the efficiency becomes worse (efficiency roll-off).
Thirdly, the life-expectancy of OLEDs is much lower than that of LCD technology because of the use of ITO anodes. Indium-tin oxide molecules can atomise and diffuse into the luminescent layer, which prevents the emission of light (as ITO traps the charges that are needed to produce the light).
But these issues have been challenged by a South Korean team who have built an OLED stack that may be the key to the future of flexible high-efficiency displays.

The New OLED Stack

A South Korean team, led by Tae-Woo Lee from Pohang University of Science and Technology, have created an OLED stack that solves most of the current OLED problems. Their OLED stack is extremely flexible, not dependent on indium-tin oxide, and is very efficient as compared to current OLED technology.
Firstly, this OLED is exploiting the new craze material, graphene, to replace the indium-tin oxide anode. Graphene is not only very optically transparent but is also incredibly flexible, which makes it ideal for flexible displays. The graphene, unlike indium-tin oxide, does not readily atomise and diffuse into the luminescence layers, which increases the life of the OLED stack.


Graphene is strong, conductive, and transparent. Image courtesy of AlexanderAlUS [CC BY-SA 3.0].

The OLED stack also uses two electro-phosphorescence layers stacked on top of each other to improve the luminous current efficiency. However, depositing the extra layers needed for two stacked luminous layers requires high-temperature chemical deposition which can damage the existing substrate layer. To overcome this, the researchers developed a Charge Generation Layer (CGL).

A typical OLED stack (a) compared to the new OLED stack (b). Image courtesy of NPG Asia Materials.

This Charge Generation Layer is imperative in the OLED stack for two reasons:
  1. It is applied at low temperatures, unlike typical Chemical Vapor Deposition.
  2. It helps to carry and inject charges through the stack.
While there are other OLEDs using graphene anodes, this OLED stack really stands out with its high efficiency and efficiency roll-off. A typical single-stack, graphene-based OLED has an External Quantum Efficiency of 32.7%. By comparison, this OLED has an efficiency as high as 45.2% and 87.3% with a hemispherical lens.


Demonstration of the new flexible OLED. Image courtesy of NPG Asia Materials.

Future for OLEDs

So what does this mean for OLEDs in the future?

Recently, OLED displays have gotten cheaper, making them more appealing to consumer markets. The displays currently on the market are not very flexible at all which means there is still a large gap in the market for such flexible displays. Transparent displays are also a technology that companies have been trying to develop for the consumer market (for example, Samsung’s OLED transparent displays).


If this technology could be explored further and made more “mass production-friendly”, we could see the introduction of flexible displays with higher battery lives, better transparency, and lower costs.

Share this:

ABOUTME

Hi all. This is deepak from Bthemez. We're providing content for Bold site and we’ve been in internet, social media and affiliate for too long time and its my profession. We are web designer & developer living India! What can I say, we are the best..

Post a Comment
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.

Labels

LEKULE TV EDITORIALS ARTICLES DC ROBOTICS DIGITAL SEMICONDUCTORS GENERATOR AC EXPERIMENTS MANUFACTURING-ENGINEERING REFERENCE FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT TRANSDUCER & SENSOR VIDEO ARDUINO RENEWABLE ENERGY AUTOMOBILE TEARDOWN SYNCHRONOUS GENERATOR DIGITAL ELECTRONICS ELECTRICAL DISTRIBUTION CABLES AUTOMOTIVE MICROCONTROLLER SOLAR PROTECTION DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES WEARABLES CAMERA TECHNOLOGY COMMUNICATION GENERATION BATTERIES FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE CONTROL SYSTEM NUCLEAR ENERGY SMATRPHONE FILTER`S POWER BIOGAS BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS ENERGY SOURCE PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD BLUETOOTH C PROGRAMMING HOME AUTOMATION HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY COMPUTER DEFECE & MILITARY FLUORESCENT LAMP INDUSTRIAL ROBOTICS ANDROID ELECTRICAL DRIVES GROUNDING SYSTEM CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS USB ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS CONTROL MOTION ELECTRICAL LAWS INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES APPS & SOFTWARE BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RECTIFIER AND CONVERTERS RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS DC MOTOR DRIVES ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS WIRELESS BUILDING SERVICES COMPRESSOR CRANES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION INDUSTRIAL DRIVES LAPTOP SCIENCE THERMOCOUPLE TRIGONOMENTRY REFERENCE UART oscilloscope BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING ELECTROMECHANICAL FEATURED FILTER DESIGN HARDWARE JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER VALVE COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF