Hello

Welcome lekule blog

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation.
together in the world. #lekule86
Join us on

The Meter Made


INDUCED CURRENT If we allow a current to flow through a coil of wire, it will generate a magnetic field. That magnetic field can be used to move nearby permanent magnets or ferrite metal components. We say that there is an induced magnetic field radiating from the coil of wire. When the induced magnetic field cuts, or passes through, the magnetic field of the permanent magnet, it has the same effect of two magnets cutting each other's fields. In other words, it attracts or repels according to polarity. Motor 1
    We have seen how this can be used to our advantage in the case of the relay, but it has much more potential than that. If, for instance, we drill a hole in a magnet, and put an axle through it. If we mount the axle on a stand, we can spin the magnet upon its axle by hand. Now if we place a coil near the magnet, we can make the magnet turn by controlling the polarity of the current through the wire.
Motor 2
    If we polarize the coil, such that the north side of the electromagnet is facing the permanent magnet, it will cause the north pole of the magnet to rotate away from the coil, while attracting the south side of the magnet toward the coil. The magnet spins 180 degrees.
    If we then change the polarity of the battery, so that the south side of the coil faces the permanent magnet, it causes the magnet to turn another 180 degrees, for a total of 360 degrees. We have caused the magnet to spin 360 degrees, and in effect, created a crude form of electric motor.
D'Arsonval Movement The important point here is that we can use electromagnetic energy to make something turn, which brings us to one of the greatest leaps in electronic advancement - the D'ARSONVAL MOVEMENT. The D'Arsonval movement is the basis for all early metering devices, and is still in common use today. There are 5 basic parts to a D'Arsonval movement.
Permanent Magnet

Coil

Hair Spring

Pointer

Scale

In the D'Arsonval movement, the permanent magnet is fixed. It is the coil which does the turning. The coil is mounted on a needle fine axle, which would allow the coil to spin 360 degrees. The hair spring is used to return the needle to its original position, as well as to regulate the movement of the meter. The pointer, which is attached to the turning coil, is used for an indicator of how far the coil has turned. Finally, the scale is used as a numerical standard to compare readings.

The D'Arsonval movement can be used by itself as a standalone instrument called a GALVANOMETER. The galvanometer is a device which indicates the presents of electrical current. It is not calibrated for Ohms, Volts, or Amps.

By adding a high resistance in series with the D'Arsonval movement, we create a VOLTMETER.
A Voltmeter is a device used to measure electrical potential in Volts. The series resistor is called a MULTIPLIER, and its purpose is to limit the flow of current through the fragile meter movement. Given a known resistance, the Voltage read at the leads of a Voltmeter can be exactly calculated to cause a certain amount of current to flow through the coil of the meter. Armed with Ohms Law, and knowing the value of the resistor we use, we can calibrate the meter's scale to measure an exact amount of Voltage. We know that:
VOLTMETER CIRCUIT

     E  Where: R = Multiplier Resistance

R = ---        E = Full Scale Voltage

     I         I = Full Scale Reading

                   of Meter 

So it follows that given a meter movement that deflects full scale when 1 milliampere flows through it, We can find the value of the multiplier resistor that is necessary by using the following formula: MEASURING VOLTS IN CIRCUIT
     1000 x E

R = --------- 

         I

If we measure the Voltage across the circuit in the diagram above, we find that E = 400 Volts.
(NOTE THAT VOLTAGE IS ALWAYS MEASURED IN PARALLEL),

     1000 x 400     400K

R = -----------  = ---------

        I          1.0 Amps

Knowing, then, that we have a 400KW Resistor, and it requires a 400 Volt potential to cause full deflection we divide the meter resistance by the full scale voltage and come up with the sensitivity of the meter.   
       meter

     resistance     400K Ohms

R = -----------  = --------- = 1000 Ohms per Volt sensitivity.

    full scale      400 Volts

      voltage

Share this:

ABOUTME

Hi all. This is deepak from Bthemez. We're providing content for Bold site and we’ve been in internet, social media and affiliate for too long time and its my profession. We are web designer & developer living India! What can I say, we are the best..

Post a Comment
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.

Labels

EDITORIALS ARTICLES LEKULE TV DC ROBOTICS DIGITAL SEMICONDUCTORS GENERATOR AC EXPERIMENTS MANUFACTURING-ENGINEERING REFERENCE FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT TRANSDUCER & SENSOR VIDEO ARDUINO RENEWABLE ENERGY AUTOMOBILE TEARDOWN SYNCHRONOUS GENERATOR DIGITAL ELECTRONICS ELECTRICAL DISTRIBUTION CABLES AUTOMOTIVE MICROCONTROLLER SOLAR PROTECTION DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES CAMERA TECHNOLOGY WEARABLES COMMUNICATION GENERATION BATTERIES FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE CONTROL SYSTEM NUCLEAR ENERGY SMATRPHONE FILTER`S POWER BIOGAS BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS ENERGY SOURCE PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR HOME AUTOMATION 555 TIMER CIRCUITS AUTOCAD BLUETOOTH C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY COMPUTER DEFECE & MILITARY FLUORESCENT LAMP INDUSTRIAL ROBOTICS ANDROID ELECTRICAL DRIVES GROUNDING SYSTEM CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS USB ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE APPS & SOFTWARE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS CONTROL MOTION ELECTRICAL LAWS INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RECTIFIER AND CONVERTERS RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS DC MOTOR DRIVES ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS WIRELESS BUILDING SERVICES COMPRESSOR CRANES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION INDUSTRIAL DRIVES LAPTOP SCIENCE THERMOCOUPLE TRIGONOMENTRY REFERENCE UART oscilloscope BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING ELECTROMECHANICAL FEATURED FILTER DESIGN HARDWARE JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER VALVE COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF