Hello

Welcome lekule blog

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation.
together in the world. #lekule86
Join us on

ACK! It's A.C. !!!

Ok, so now that you think you've had enough with math, you find that AC has more complicated math than DC does. But the fun isn't quite over yet. You've got to be able to convert AC voltage to their DC equivalent voltages, and visa versa. The main problem is with Voltage. DC Voltage is straightforward. If it's 10 Volts, it's 10 Volts - period.

But with AC, Voltage becomes more difficult to define. Looking at an AC wave, we actually have 3 different voltages to compare. The voltage from the 0 line to the positive peak of the AC curve is called the PEAK VOLTAGE. If we measure the Voltage from the top of the positive peak, to the bottom of the Negative peak, we call it the PEAK TO PEAK VOLTAGE, which is equal to 2 times the peak voltage. Finally, when we try to do work with an AC Voltage, we find out that a 10 Volt peak voltage wont turn a motor as fast as a 10 Volt DC Voltage. Reason? Because 10 Volts DC is 10 Volts all the time. A 10 Volt peak AC Voltage is only 10 Volts for an instant. The rest of the time it is swinging higher and lower in Voltage level. So at what Voltage level does the AC wave do as much work as a pure DC Voltage?

Effective and Average Voltages

    It was found that it takes a 141 Volt AC wave to do the same amount of work as a 100 Volt DC source. The EFFECTIVE value of a 141 Volt AC source then is only 100 Volts. Another term for EFFECTIVE voltage is RMS, which stands for Root Mean Square.

    Often, electricians and electronics technicians find that they need to be able to convert AC voltages to DC voltages. They need to know what the effective voltage is. Based on the 141:100 ratio of AC to DC, the following formulae were conceived:



Where Epeak equals the peak voltage of an AC signal and Eeff equals its effective (RMS) DC equivalent.

Effective and Average Voltages
Just when you thought it was safe to get back into the water, I'm gonna throw one more formula at you. What happens if we take all the instantaneous voltage values of a sine wave, add them all up, and then take the average of them? Well, it doesn't quite come up to the effective voltage. When working with rectifier circuits (we'll discuss them in a later section), we must sometimes use what is known as the AVERAGE VOLTAGE of a given AC sine wave. The average voltage is found by the following formula:






 Now at this point, one might pose the question - WHY do we go into such detail about different voltage levels (peak, RMS, and average). The reason is because you ABSOLUTELY need to know which you are working with at any particular time. For instance - 100 Volts PEAK voltage may be the threshold at which your $30,000 piece of lab equipment (say a 6 trace digital oscilloscope)gets destroyed. If you measure it with a multimeter first, and it shows 90 Volts, then think you can put your scope on it - you just blew the front end of your scope. Why? Because 90 Volts RMS is greater than 100 Volts Peak by 27 Volts!!! Multimeters measure in RMS typically, and most aren't accurate enough to measure in "True RMS". You have to know the parameters of the device being tested, as well as the limitations of your equipment, or you'll wind up doing a lot of expensive damage! 

Share this:

ABOUTME

Hi all. This is deepak from Bthemez. We're providing content for Bold site and we’ve been in internet, social media and affiliate for too long time and its my profession. We are web designer & developer living India! What can I say, we are the best..

Post a Comment
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.

Labels

LEKULE TV EDITORIALS ARTICLES DC ROBOTICS DIGITAL SEMICONDUCTORS GENERATOR AC EXPERIMENTS MANUFACTURING-ENGINEERING REFERENCE FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT TRANSDUCER & SENSOR VIDEO ARDUINO RENEWABLE ENERGY AUTOMOBILE TEARDOWN SYNCHRONOUS GENERATOR DIGITAL ELECTRONICS ELECTRICAL DISTRIBUTION CABLES AUTOMOTIVE MICROCONTROLLER SOLAR PROTECTION DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES WEARABLES CAMERA TECHNOLOGY COMMUNICATION GENERATION BATTERIES FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE CONTROL SYSTEM NUCLEAR ENERGY SMATRPHONE FILTER`S POWER BIOGAS BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS ENERGY SOURCE PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD BLUETOOTH C PROGRAMMING HOME AUTOMATION HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY COMPUTER DEFECE & MILITARY FLUORESCENT LAMP INDUSTRIAL ROBOTICS ANDROID ELECTRICAL DRIVES GROUNDING SYSTEM CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS USB ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS CONTROL MOTION ELECTRICAL LAWS INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES APPS & SOFTWARE BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RECTIFIER AND CONVERTERS RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS DC MOTOR DRIVES ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS WIRELESS BUILDING SERVICES COMPRESSOR CRANES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION INDUSTRIAL DRIVES LAPTOP SCIENCE THERMOCOUPLE TRIGONOMENTRY REFERENCE UART oscilloscope BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING ELECTROMECHANICAL FEATURED FILTER DESIGN HARDWARE JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER VALVE COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF