Sometimes You Just Need a Transistor: A New Low-Side Driver Array from Texas Instruments

ICs such as the TPL7407LA provide convenient, high-performance switching for a variety of common applications.

As the title of this article points out, in terms of functionality, sometimes all you need is a transistor. This is true enough, and the TPL7407LA from TI provides this functionality. However, I don’t want you to get the impression that this IC is just seven MOSFETs. Even if it were, you would still save board space compared to a discrete implementation, but the device offers various benefits precisely because it incorporates more than merely the output transistors.


Diagram taken from the datasheet.

As you can see, each channel has overvoltage protection, specialized gate-drive and regulation circuitry, and a flyback diode. And of course a transistor—more specifically, an N-channel MOSFET. The idea here is that each channel provides the basic functionality of a FET switch but with additional features that eliminate complications and external components that would be involved if you were using discrete transistors.

I have to admit that I like this approach. There is something satisfying about driving things with ordinary transistors instead of highly integrated, multifunction ICs. It is also true, though, that I’d rather not divert time and mental energy to the irksome details associated with optimizing a low-side driver.

So with the TPL7407LA and other similar ICs, you get an old-fashioned NMOS transistor with additional features that simplify implementation and improve performance. And of course it could be argued that devices of this kind provide not just nostalgic benefits but also flexibility. As the datasheet points out, the TPL7407LA can be used in various applications—motors, relays, LEDs, and so forth. So you have one device that might find a place in numerous projects. Another aspect of this flexibility is that you can use just one IC in a project involving different types of loads; for example:


Diagram taken from the datasheet.

Features

Efficiency

The TPL7407LA is described as a pin-to-pin replacement for Darlington arrays. This is good to remember if you have designs based on “old-fashioned” Darlington parts and want a simple method of upgrading to a higher-performance solution. According to TI, the key advantage offered by the TPL7407LA compared to a Darlington array is power dissipation.

When the output transistor is active and sourcing current, some nonzero voltage is present between the output pin and ground. In the case of a MOSFET, this is the drain-to-source voltage, but more generally it can be referred to as VOL (“output low voltage”). Power, as always, is current times voltage, so the power dissipation of the drive transistor is directly proportional to VOL. TI claims that the TPL7407LA can be much more efficient than a Darlington array because its typical VOL is much lower, though the datasheet implies that this benefit is more pronounced at lower load currents (i.e., less than 250 mA; the max current rating is 600 mA). The following plot shows VOL vs. current, but I don’t know how this compares to a Darlington implementation.


Plot taken from the datasheet.

Parallel Drive

At first glance 600 mA might seem a bit restrictive, but in reality it’s a minor issue, because the outputs can be paralleled in order to increase the max current. You can see this in the example circuit given above. If you have to control seven loads and they each need 1500 mA, yes, you’re out of luck. But many applications will not require all seven outputs, and overall, parts like this one offer pleasant versatility in terms of maximum current. As far as I can tell you could parallel all the outputs and drive a 4 A load, or you can control seven low-current loads, or anything in between.

Input Voltage

You might recall the drive and regulation circuitry mentioned toward the beginning of the article. What’s going on there? Well, the TPL7407LA accepts a wide range of input (i.e., control) voltages. The extra circuitry ensures not only that the lower voltages turn on the output FET but also that the FET will be adequately enhanced.

If you’ve read this article, you know that higher gate-to-source voltage is needed to achieve lower on-state resistance. The TPL7407LA is designed to allow a logic-level device (e.g., a microcontroller) to switch high-current loads, and it accepts input voltages as low as 1.8 V. The “new” (according to the datasheet) regulation and drive circuitry ensures that lower control voltages do not result in degraded switch performance.
Previous
Next Post »
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.
Related Posts Plugin for WordPress, Blogger...

Label

KITAIFA NEWS KIMATAIFA MICHEZO BURUDANI SIASA TECHNICAL ARTICLES f HAPA KAZI TU. LEKULE TV EDITORIALS ARTICLES DC DIGITAL ROBOTICS SEMICONDUCTORS MAKALA GENERATOR GALLERY AC EXPERIMENTS MANUFACTURING-ENGINEERING MAGAZETI REFERENCE IOT FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT VIDEO ZANZIBAR YETU TRANSDUCER & SENSOR MITINDO ARDUINO RENEWABLE ENERGY AUTOMOBILE SYNCHRONOUS GENERATOR ELECTRICAL DISTRIBUTION CABLES DIGITAL ELECTRONICS AUTOMOTIVE PROTECTION SOLAR TEARDOWN DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS MICROCONTROLLER CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES CAMERA TECHNOLOGY GENERATION WEARABLES BATTERIES COMMUNICATION FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE NUCLEAR ENERGY CONTROL SYSTEM FILTER`S SMATRPHONE BIOGAS POWER TANZIA BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT cartoon CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP ENERGY SOURCE FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY DEFECE & MILITARY FLUORESCENT LAMP HOME AUTOMATION INDUSTRIAL ROBOTICS ANDROID COMPUTER ELECTRICAL DRIVES GROUNDING SYSTEM BLUETOOTH CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR USB AUDIO BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS ELECTRICAL LAWS HMI[HUMANI INTERFACE MACHINES INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS CONTROL MOTION ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS APPS & SOFTWARE BASIC AC THEORY BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE RECTIFIER AND CONVERTERS SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS BUILDING SERVICES COMPRESSOR CRANES DC MOTOR DRIVES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION LAPTOP THERMOCOUPLE TRIGONOMENTRY REFERENCE UART WIRELESS BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING FILTER DESIGN HARDWARE INDUSTRIAL DRIVES JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER SCIENCE VALVE WWE oscilloscope 3D TECHNOLOGIES COLOR CODES ELECTRIC TRACTION FEATURED FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER MATERIAL PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF