Overclocked Wearables Can Pick Up Bio-Acoustic Signals

Researchers have demonstrated that overclocking can make conventional wearables capable of recognizing the wearer's movements.

The sensors incorporated into wearables can sometimes be repurposed to perform tasks beyond their intended applications. For example, it's been shown that it's possible to discover a victim user’s passwords and PINs by applying a sophisticated algorithm to the data gathered by wearable embedded sensors.

Recently, researchers at the Future Interfaces Group at Carnegie Mellon University have overclocked the accelerometer of an LG smartwatch to extend its capabilities to more than just tracking fitness. By overclocking the off-the-shelf smartwatch via some software updates, they can now detect and process very small vibrations and audio signals.
The new technology, dubbed ViBand, can allow different apps to understand the context of your activities by capturing bio-acoustic signals.

The Applications of ViBand

The hacked watch can distinguish between different tools, such as a guitar, a drill, and more, as you use them. It can also interpret different gestures such as flicks, snaps, scratches, taps, and other motions. It even goes beyond this: ViBand can differentiate tapping on the forearm, the palm of the hand, or the back of the hand.
All of these are possible because each activity generates a distinctive bio-acoustic signal. As a result, via overclocking, you can use common gestures to control your smartwatch and all the objects which are connected to your watch through the IoT.


Tapping on different parts of the hand generates a bio-acoustic signal which is distinguishable to the ViBand. Image courtesy of CMU.

Gierad Laput, a Ph.D. student in the Human-Computer Interaction Institute (HCII), notes that the new technology allows your hand, which is a natural way of interacting with the world, to act as a detection device.
The research team proposes that several other interesting applications are possible, such as building object-aware apps which monitor your activities. For example, the device could recognize when you're preparing a meal and give advice if necessary.
Moreover, they propose a device called vibro-tag which utilizes inaudible vibrations to transmit data. Installed on an office door, a vibro-tag can transmit information—phone numbers, office hours, and more—to your watch.

Overclocking a Commercial Watch

Generally, in a wearable, the software restricts the sample rate of the embedded accelerometers to about 100Hz. This sample rate is sufficiently high for the common applications of today’s wearables such as activating the screen when the user lifts an arm or counting the footsteps.
However, to capture the bio-acoustic signals, a sample rate of 4kHz was required. The research team hacked the Linux kernel on the watch and upgraded the software. To examine their idea, researchers developed some experimental apps for ViBand. The new technology could successfully control the apps on the watch or the remote devices, such as the lights and a TV, through common gestures.


Drawbacks and Concerns

The main drawback to the hacked watch is a considerable increase in the power consumption. Processing the additional data from the accelerometers, ViBand may burn twice as much power as a conventional wearable.
Although the wide potential applications of ViBand are quite intriguing, it seems that some security concerns need further exploration. As mentioned in the beginning of this article, a sophisticated algorithm can extract the passwords and PINs from a conventional wearable. Now that ViBand is gathering much more information than conventional devices, the security of the device seems to be even more vulnerable.
In addition, since the device itself is naturally burning more power, it is more likely to employ low-energy communication methods which further raise the security concerns.


The details of this technology are presented at the Association for Computing Machinery’s User Interface Software and Technology (ACM UIST) Symposium in Tokyo.
Previous
Next Post »
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.
Related Posts Plugin for WordPress, Blogger...

Label

KITAIFA NEWS KIMATAIFA MICHEZO BURUDANI SIASA TECHNICAL ARTICLES f HAPA KAZI TU. LEKULE TV EDITORIALS ARTICLES DC DIGITAL ROBOTICS SEMICONDUCTORS MAKALA GENERATOR GALLERY AC EXPERIMENTS MANUFACTURING-ENGINEERING MAGAZETI REFERENCE IOT FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT VIDEO ZANZIBAR YETU TRANSDUCER & SENSOR MITINDO ARDUINO RENEWABLE ENERGY AUTOMOBILE SYNCHRONOUS GENERATOR ELECTRICAL DISTRIBUTION CABLES DIGITAL ELECTRONICS AUTOMOTIVE PROTECTION SOLAR TEARDOWN DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS MICROCONTROLLER CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES CAMERA TECHNOLOGY GENERATION WEARABLES BATTERIES COMMUNICATION FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE NUCLEAR ENERGY CONTROL SYSTEM FILTER`S SMATRPHONE BIOGAS POWER TANZIA BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT cartoon CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP ENERGY SOURCE FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY DEFECE & MILITARY FLUORESCENT LAMP HOME AUTOMATION INDUSTRIAL ROBOTICS ANDROID COMPUTER ELECTRICAL DRIVES GROUNDING SYSTEM BLUETOOTH CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR USB AUDIO BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS ELECTRICAL LAWS HMI[HUMANI INTERFACE MACHINES INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS CONTROL MOTION ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS APPS & SOFTWARE BASIC AC THEORY BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE RECTIFIER AND CONVERTERS SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS BUILDING SERVICES COMPRESSOR CRANES DC MOTOR DRIVES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION LAPTOP THERMOCOUPLE TRIGONOMENTRY REFERENCE UART WIRELESS BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING FILTER DESIGN HARDWARE INDUSTRIAL DRIVES JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER SCIENCE VALVE WWE oscilloscope 3D TECHNOLOGIES COLOR CODES ELECTRIC TRACTION FEATURED FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER MATERIAL PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF