Hello

Welcome lekule blog

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation.
together in the world. #lekule86
Join us on

Gold-Coated DNA Nanowires Could Power Genetic Computing

A team of scientists in Germany have created nanowires made of genetic material coated with gold which can conduct electricity. These genetic nanostructures could be the key to genetic computers in an ever more demanding environment.

The Limits of Modern Computing

Moore’s law states that the maximum number of transistors that can be reliably fabricated on silicon doubles every 18 months. This has been the general trend for the past 50 years.
However, feature sizes are already in the tens of nanometers which is causing issues for semiconductor fabricators. Some of these problems include wet etching issues, resolution of projected designs, and the difficulty in getting more than 1 billion transistors perfect.
Other problems are more physical and bizarre, including quantum tunneling where electrons literally teleport from one conductor to the next (jumping across an insulating barrier) and result in a leakage current. This leakage current generates more heat which, in turn, increases leakage current resulting in thermal runaway.


Getting transistors even smaller is possible but whether those devices will be reliable enough to produce the latest processors is increasingly becoming an unlikely gamble. Even if 2nm transistors become a reality, after that point transistors will be made using individual atoms—feature size reduction beyond that is impossible.

It is, therefore, no surprise that scientists need to find alternative methods for computational methods that can meet the constantly growing demand for more powerful devices. Some possibilities include specialized devices such as photon computers which can solve complex algorithms such as the traveling salesman problem. Other solutions include the use of quantum computers to offload complex tasks from conventional computers such as encryption, database lookups, and path-finding algorithms.

One issue with conventional computers is that they have to be designed to accept any task. This comes at a cost to speed. A classic example is using a CPU in a computer to handle graphics and consequently having processing time taken away from programs. The ZX series of computers developed by Sinclair Research used this method—this meant that the user had to halt the display to maximize the processing power.

This problem has been overcome with the introduction of graphics cards which offload as much graphical processing as they can. The result has been graphics chips that can solve complex polynomial equations with powerful graphics features and more processing power for user programs.
This use of specialized hardware could be the key to improving computer performance in the future which is why genetic computing is highly sought after.

Genetic Computers

Some of the most complex processes known to man are those found in living cells. DNA is arguably the most complex.
DNA, also known as deoxyribonucleic acid, is the molecule that holds all the genetic instructions needed to make a living creature. DNA consists of four bases: A (adenine), T (thymine), G (guanine), and C (cytosine). Each base on the DNA strand potentially stores two bits of information.
The human genome consists of over 3 billion bases. It stands to reason, then, that each human cell potentially holds up to 6.4 billion bits (740MB) of information. Genetic computers, however, would not be limited to high-density data storage because DNA can also be manipulated to create structures in a process known as “DNA origami”, the nanoscale folding of DNA molecules to create arbitrary 2D and 3D structures by exploiting the interaction between the base pairs A, T, G, and C. Using DNA origami, a team of scientists even developed a DNA computer that can play tic-tac-toe.
But DNA devices on their own will not be sufficient for modern computing as there needs to be a method for bridging electrical components to organic processors. This is where a research team from Germany has made headway. They've taken on that problem with their research into gold-coated DNA nanowires.


Genetic material shows promise in the field of computing

The team, including Bezu Teschome and Artur Erbe of Helmholtz-Zentrum Dresden-Rossendorf, have created their gold nanowires using a series of complex steps, the first of which involves DNA origami. The structure is first designed as a 3D or 2D raster model which is then fed into a computer. The computer determines how the structure will fit together and then designs a DNA strand with specific base pairs at certain points. When this strand (along with other material) is mixed in solution, heated, and then cooled, it forms the desired design due to Watson-Crick base pairing.


DNA Origami can be used to create structures as shown here. Image courtesy of Thomas H. LaBean and Hao Yan via Michael Strong. [CC BY 2.5]

The German team used this DNA origami to create nanotubes which measure just 30nm wide. For perspective, a red blood cell is 7000nm across and the Ebola virus is 970nm long and 80nm wide.
This nanotube, however, is not very conductive—which is a problem when the goal is to connect such genetic material to electrical components. Therefore, the team needed to increase the conductivity of the nanotubes which was done by using gold.

Special molecules were used to bind gold ions to the outer layer of the nanotube to (theoretically) make the structure conductive. But there was still a problem with the design. Unless the tube can be connected to electrodes for testing, the electrical conductivity cannot be tested.
To tackle this problem, the team used electron beam lithography to help electrically connect the strand to probes that have a tip width of just a few tens of nanometers. The structure was tested between room temperature and 4 Kelvin with a result of Ohmic behavior which demonstrates conductivity throughout the tube.


DNA nanotube structure. Image courtesy of Graham D. Hamblin via McGill University

The Genetic Advantage

Organic devices have many advantages over electrical devices that could truly revolutionize how data is processed and handled—and how technology interacts with living beings.

For example, genetic material can self-replicate which gives the possibility of self-replication and self-healing computers. Such an ability may, in turn, lead to more advanced robotics and intelligent systems which can self-program and replicate with no human interaction at all.

Genetic material also has the ability to be readily absorbed by biological entities such as human beings which could be the key to computational implants of the future. DNA nanowires could be used to connect to individual neurons in the brain and spinal cord which may be used for those who suffer paralysis and/or those who require artificial limbs.

The other major advantage of DNA systems is the independence from electrical energy. DNA systems are dependent on heat and phosphates (ATP) as their source of energy which could be paired with electronic devices perfectly. Electrical circuits generate heat as a byproduct, which is unwanted. But if a DNA co-processor was coupled in the same package as a semiconductor, then the waste heat could be used to power the DNA machine at no extra cost.


DNA nanowires could be used to connect neurons to electrical devices. Image courtesy of Zeiss [CC BY 2.0]

Summary

Manipulating genetic material and shaping it into almost any conceivable structure seems like the stuff of science fiction. While it is still too early to make claims about how genetic computers may be used and how they may change technology, it cannot be denied that they will change technology if they are implemented.
But such ideas may also be controversial. Use of genetic material and implantation may be a mere stepping stone away from genetic ideology and manipulation.

Share this:

ABOUTME

Hi all. This is deepak from Bthemez. We're providing content for Bold site and we’ve been in internet, social media and affiliate for too long time and its my profession. We are web designer & developer living India! What can I say, we are the best..

Post a Comment
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.

Labels

LEKULE TV EDITORIALS ARTICLES DC ROBOTICS DIGITAL SEMICONDUCTORS GENERATOR AC EXPERIMENTS MANUFACTURING-ENGINEERING REFERENCE FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT TRANSDUCER & SENSOR VIDEO ARDUINO RENEWABLE ENERGY AUTOMOBILE TEARDOWN SYNCHRONOUS GENERATOR DIGITAL ELECTRONICS ELECTRICAL DISTRIBUTION CABLES AUTOMOTIVE MICROCONTROLLER SOLAR PROTECTION DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES WEARABLES CAMERA TECHNOLOGY COMMUNICATION GENERATION BATTERIES FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE CONTROL SYSTEM NUCLEAR ENERGY SMATRPHONE FILTER`S POWER BIOGAS BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS ENERGY SOURCE PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD BLUETOOTH C PROGRAMMING HOME AUTOMATION HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY COMPUTER DEFECE & MILITARY FLUORESCENT LAMP INDUSTRIAL ROBOTICS ANDROID ELECTRICAL DRIVES GROUNDING SYSTEM CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS USB ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS CONTROL MOTION ELECTRICAL LAWS INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES APPS & SOFTWARE BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RECTIFIER AND CONVERTERS RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS DC MOTOR DRIVES ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS WIRELESS BUILDING SERVICES COMPRESSOR CRANES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION INDUSTRIAL DRIVES LAPTOP SCIENCE THERMOCOUPLE TRIGONOMENTRY REFERENCE UART oscilloscope BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING ELECTROMECHANICAL FEATURED FILTER DESIGN HARDWARE JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER VALVE COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF