The End of the Age of MOSFETs? Carbon Nanotubes Finally Outperform Silicon in Transistors

For the first time ever, a material other than silicon has managed to boast the top performance specs in the field of transistors. Carbon nanotube transistors (CNTs) could finally take over as reigning champion in transistor production.

Advances in semiconductor devices have consistently been improving our technological limits by reducing device proportions for the past few decades. The current graphene and silicon chips have nearly reached optimization. Due to their technological and scientific limitations, we have been forced to explore new and better material alternatives.

Over 20 years ago it was suggested that carbon nanotubes would be the answer to creating chips with smaller dimensions due to their electrical conductivity. However, this idea had been tossed aside for decades due to the discrepancies and deviations that arose between metallic and semiconducting single-walled carbon nanotubes in addition to problems concerning wafer alignment.


Rendering of a single-walled carbon nanotube. Image sourced from Wikimedia Commons.

But material engineers at the University Wisconsin-Madison have created a transistor made from carbon nanotubes (CNTs) that has managed to outperform the latest silicon transistor models.

UW-Madison's CNT Transistor

The team was led by two professors of materials and engineering Padma Gopalan and Michael Arnold. The UW-Madison team was able to produce a transistor with a current 1.9 times quicker than current silicon transistors. The speed at which a current can transit from a transistor’s source and drain terminals regulates the speed at which a circuit can operate. Faster currents enable devices in circuits to be charged faster.

In their research published in the journal Science Advances the team explains the difficulties and production processes involved in creating the new CNT transistors. The team was able to pinpoint distinguishing processes that enable specific polymers to sort the single-walled carbon nanotubes to produce an immaculately pure solution.

Specific conditions were established that enabled the removal of nearly all (to .01%) of the metallic. A process called floating evaporative self-assembly (or FESA) was developed by the team back in 2014 and was used to deposit arrays of aligned semiconducting single-walled carbon nanotubes at high deposition velocity with exemplary control of placement and quantity.
As of now, the team has been able to manufacture this process on a 1x1 inch scaled wafer.


Image courtesy of the University of Wisconsin-Madison

The UW-Madison team benchmarked the performance of their CNT arrays compared to state-of-the-art single CNT FETs and to commercial metal oxide silicon FETs with the same geometry, size, and leakage current. The result is that the CNT arrays produced current 1.9 times higher than the oxide silicon MOSFETs.

Using the data from single CNT assessment, the researchers hypothesized that the new transistor will be capable of functioning five times faster with potential to become five times more efficient than current silicon transistors.


The layout of a typical MOSFET. Image courtesy of Oxford University.

The Future of Transistor Technology

The advancements in their research could potentially lead the CNT transistors to succeed the use of silicon transistors while continuing to abide by the old notion of Moore's Law. These transistors are particularly useful in wireless communication and computer chips among various other fields as they demand large current flows through their circuitry, which is exactly what the new CNT transistors provide.

The team is still continuing their research, currently adapting the size and shape of the CNTs to match their silicon counterparts, which change geometry regularly. They are also in the midst of developing RF amplifiers to boost signal strength.

The CNT technology is approaching the level of development where research will be aimed at advancing the performance in potential devices. The work is currently patented and is receiving funding from the NSF and several military branches.

Michael Arnold has been quoted as saying that this is “a critical advance toward exploiting carbon nanotubes in logic, high-speed communications, and other semiconductor electronics technologies.” According to him, CNTs finally outpacing silicon has been a major goal for nanotechnology for 20 years.

To learn more, check out this video of the researchers going over their invention:



Previous
Next Post »
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.
Related Posts Plugin for WordPress, Blogger...

Label

KITAIFA NEWS KIMATAIFA MICHEZO BURUDANI SIASA TECHNICAL ARTICLES f HAPA KAZI TU. LEKULE TV EDITORIALS ARTICLES DC DIGITAL ROBOTICS SEMICONDUCTORS MAKALA GENERATOR GALLERY AC EXPERIMENTS MANUFACTURING-ENGINEERING MAGAZETI REFERENCE IOT FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT VIDEO ZANZIBAR YETU TRANSDUCER & SENSOR MITINDO ARDUINO RENEWABLE ENERGY AUTOMOBILE SYNCHRONOUS GENERATOR ELECTRICAL DISTRIBUTION CABLES DIGITAL ELECTRONICS AUTOMOTIVE PROTECTION SOLAR TEARDOWN DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS MICROCONTROLLER CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES CAMERA TECHNOLOGY GENERATION WEARABLES BATTERIES COMMUNICATION FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE NUCLEAR ENERGY CONTROL SYSTEM FILTER`S SMATRPHONE BIOGAS POWER TANZIA BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT cartoon CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP ENERGY SOURCE FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY DEFECE & MILITARY FLUORESCENT LAMP HOME AUTOMATION INDUSTRIAL ROBOTICS ANDROID COMPUTER ELECTRICAL DRIVES GROUNDING SYSTEM BLUETOOTH CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR USB AUDIO BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS ELECTRICAL LAWS HMI[HUMANI INTERFACE MACHINES INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS CONTROL MOTION ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS APPS & SOFTWARE BASIC AC THEORY BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE RECTIFIER AND CONVERTERS SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS BUILDING SERVICES COMPRESSOR CRANES DC MOTOR DRIVES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION LAPTOP THERMOCOUPLE TRIGONOMENTRY REFERENCE UART WIRELESS BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING FILTER DESIGN HARDWARE INDUSTRIAL DRIVES JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER SCIENCE VALVE WWE oscilloscope 3D TECHNOLOGIES COLOR CODES ELECTRIC TRACTION FEATURED FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER MATERIAL PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF