World’s First Robotic Eye Surgery Is a Milestone for Biomedical Tech

A new device, the Robotic Retinal Dissection Device (AKA the R2D2), has been used to restore the sight in an eye. What will this mean for robots in delicate surgeries in the future?

A World First

Robots operating on people is a common theme in science fiction—the emergency surgery pod in Prometheus, the birth of Luke and Leia Skywalker, and the Elysium healing pods which magically shoo away any nasty diseases and cancers. The real world, however, has taken its time in catching up to fiction.
But robotic surgeries are just around the corner thanks to a team of surgeons at Oxford’s John Radcliff Hospital. With the help of Oxford University and the creators of a cutting-edge surgical machine—the Preceyes—the world’s first robotic eye surgery took place and has restored the vision of British priest, Bill Beaver.


Robotic eye surgery, a world first. Image courtesy of Oxford University.

Robotic arms and devices are common in large-scale surgeries having to do with the abdominal cavity and lung tissue but are not found in places such as the eye. This is because of the tiny movements required in eye surgery which are not available with most current medical equipment. So what has changed and why was the robot needed?

The Patient and the Operation

The patient, Bill Beaver, had begun to grow a membrane on his retina which distorted the incoming light and began to create a “blur” in the centre of his sight. The membrane was only 100th of a millimetre (10µm) and this would have been difficult to remove for even the steadiest surgeon's hands.
The surgery took place at the end of August and was a complete success with the retina undamaged and his sight restored. A gas bubble did form in his eye which has resulted in short sightedness but this is only temporary.


The patient, Father Bill Beaver. Image courtesy of the BBC.

In order for a surgeon to operate on the eye, they have to time their movements in between heart beats! If you have access to a microscope and try to hold a needle steady you will notice that your heartbeat will move the needle slightly. This is not a problem for repairing an artery, for example, but when you have to remove something that is only 10µm thick, you can imagine that those tiny bumps could be the difference between a successful operation and permanently blinding the patient.
On top of that, all of the surgery has to be done through a 1mm diameter needle while the eye can still move (and does). If that was not bad enough, during the procedure the surgeon has to retract the tool from the eye multiple times throughout the surgery. While it is possible for a surgeon to do this manually, it is a difficult operation to attempt!


An operation in progress. Image courtesy of Merton College, Oxford.

To counteract this issue, a Dutch company has designed a robotic assist called the Robotic Retinal Dissection Device (R2D2). What this machine does is scale down the movements of the surgeon’s hands using seven motors, a controller, and touchscreen. This helps to remove tiny tremors in movement (from breathing or their heartbeat, for example) and thus increase the chance of success significantly.
This machine is being sponsored by the University of Oxford and funded by the NIHR Oxford Biomedical Research Centre.


The robotic needle and controller used in the operation. Image courtesy of the BBC.

Potential Future Applications

This operation represents a significant step for medical engineering. The idea of a machine that can scale down the movements of a surgeon opens up many new opportunities in surgery that did not exist before. But the inventors have bigger plans for this technology. One plan is to use the robot to inject stem cells below the retina to restore sight to those who are blind. While this is possible by hand, the robot would be able to achieve this operation in just 10 minutes (something that is impossible if done by hand).
This robot, itself, is just the beginning of a whole world of potential robotic procedures.
For example, a clot inside the brain cannot typically be reached (if it is too deep inside), but a tool like this could potentially avoid important areas and reach the clot. Spinal cords would be easier to repair and even fighting cancer could be benefited where individual cells could be targeted and removed.
Robotic devices may even replace the surgeon completely and replace human error with precise movement and accuracy. Then there is the length of the operation: With faster operations, more patients can be seen which would help to fight the growing issue with space in hospitals.
Need that eye surgery done by 2PM to make that meeting? No problem! Sit in this chair, enter the fee, and push the button when ready. This science-fiction scenario is a lot less fictional than it was a decade ago.

But no matter how far into the future we peer, there is no doubt that this extraordinary surgery is a milestone in the path to getting there.
Previous
Next Post »
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.
Related Posts Plugin for WordPress, Blogger...

Label

KITAIFA NEWS KIMATAIFA MICHEZO BURUDANI SIASA TECHNICAL ARTICLES f HAPA KAZI TU. LEKULE TV EDITORIALS ARTICLES DC DIGITAL ROBOTICS SEMICONDUCTORS MAKALA GENERATOR GALLERY AC EXPERIMENTS MANUFACTURING-ENGINEERING MAGAZETI REFERENCE IOT FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT VIDEO ZANZIBAR YETU TRANSDUCER & SENSOR MITINDO ARDUINO RENEWABLE ENERGY AUTOMOBILE SYNCHRONOUS GENERATOR ELECTRICAL DISTRIBUTION CABLES DIGITAL ELECTRONICS AUTOMOTIVE PROTECTION SOLAR TEARDOWN DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS MICROCONTROLLER CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES CAMERA TECHNOLOGY GENERATION WEARABLES BATTERIES COMMUNICATION FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE NUCLEAR ENERGY CONTROL SYSTEM FILTER`S SMATRPHONE BIOGAS POWER TANZIA BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT cartoon CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP ENERGY SOURCE FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY DEFECE & MILITARY FLUORESCENT LAMP HOME AUTOMATION INDUSTRIAL ROBOTICS ANDROID COMPUTER ELECTRICAL DRIVES GROUNDING SYSTEM BLUETOOTH CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR USB AUDIO BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS ELECTRICAL LAWS HMI[HUMANI INTERFACE MACHINES INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS CONTROL MOTION ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS APPS & SOFTWARE BASIC AC THEORY BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE RECTIFIER AND CONVERTERS SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS BUILDING SERVICES COMPRESSOR CRANES DC MOTOR DRIVES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION LAPTOP THERMOCOUPLE TRIGONOMENTRY REFERENCE UART WIRELESS BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING FILTER DESIGN HARDWARE INDUSTRIAL DRIVES JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER SCIENCE VALVE WWE oscilloscope 3D TECHNOLOGIES COLOR CODES ELECTRIC TRACTION FEATURED FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER MATERIAL PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF