Hello

Welcome lekule blog

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation.
together in the world. #lekule86
Join us on

HT vs PLA Filament for High-Temperature 3D Printing

PLA or HT? Which high-temperature filament can stand heat and stress better?

In my last article, I went over the basics of working with high-temperature 3D printer filaments. In this article, I'll put both HT and PLA (polylactic acid) filament through two of three separate homemade tests.

The three experiments I conducted were designed to test the two filaments in terms of strength and heat resistance while controlling as many outside factors as possible.
I’m sure that ColorFabb has a very sophisticated, very expensive testing machine that tests their filament in a completely controlled environment. Unfortunately, I do not have access to such a machine, so my testing devices will be built out of materials you can purchase from your local hardware store.

Oven Test

The first experiment was designed to test the heat resistance of the two filaments. I put two rings, one in HT and one in PLA, side by side on a cookie sheet and put them in an oven. Then, I started ramping up the heat. The following picture shows the two models after the test.

Both models (HT on the left and PLA on the right) after the oven test

Frankly, I was very surprised by the outcome. At exactly 100 degrees Celsius, I pulled the models out of the oven and attempted to cut them using a butter knife. Both models held up in exactly the same fashion, so I put them back in the oven and again turned up the heat.

The interesting outcome occurred at 300 degrees Fahrenheit. The black HT ring was malleable and folded in on itself, while the white PLA ring appeared unfazed by the high temperature. This could be a product of the HT filament being more pliable overall, but it is not the “High Temperature” resilience that I expected.

What is important to note is that this experiment was not conducted under the operating specs explicitly set forth by the manufacturer. The HT filament's exact claim is that the filament retains its strength up to 100 degrees Celsius, and the filament folded under significantly more than that. Even though I will talk about verifying that exact claim in the final article in this series, this first test is not a standout performance by the HT filament.

Hammer Drop Test

The second test I conducted was purely a strength test. To test the strength of the filament, I mounted the each ring in a vice and repeatedly dropped a four-pound sledgehammer on them. Here is a layout of the testing machine:

The ColorFabb_HT model in the testing setup

Of course, the optimal way to test the ring would be to hang successive weights on it until it failed, but I felt that this method was much safer in that it did not involve heavy weights suddenly falling to the ground.

I started by dropping the hammer on the print from a short height and successively raised the hammer, one inch at a time. If the print survived all of those drops, I would repeatedly drop the hammer from the highest point and record how many hits it survived. The following two videos show each print having the hammer dropped on it.

   
The HT (left) and PLA (right) models reaching their respective breaking points in the stress test

This is the test that the HT filament truly stood out in. The PLA couldn’t survive even one drop from the highest point, while the HT model survived through twenty-two drops. Honestly, I’m surprised that ColorFabb doesn’t market the product as primarily higher-strength because the improvement over standard PLA is unprecedented.

One of the main attributes that makes the HT filament more shock resistant is its inherent softness. This may have been a detriment during a pure heat test, but when a weight is dropped on it, the HT filament is more “bouncy” and is able to absorb the energy much more effectively. Even other filaments designed for strength, such as carbon fiber composites, are much more rigid and would not be able to handle the shock as well. The difference would be similar to dropping a hammer on a rubber ball instead of a raw egg.


In the next article, we will talk about testing the heat resistance and strength simultaneously, as well as an overall analysis about how each filament performed.

Share this:

ABOUTME

Hi all. This is deepak from Bthemez. We're providing content for Bold site and we’ve been in internet, social media and affiliate for too long time and its my profession. We are web designer & developer living India! What can I say, we are the best..

Post a Comment
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.

Labels

LEKULE TV EDITORIALS ARTICLES DC ROBOTICS DIGITAL SEMICONDUCTORS GENERATOR AC EXPERIMENTS MANUFACTURING-ENGINEERING REFERENCE FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT TRANSDUCER & SENSOR VIDEO ARDUINO RENEWABLE ENERGY AUTOMOBILE TEARDOWN SYNCHRONOUS GENERATOR DIGITAL ELECTRONICS ELECTRICAL DISTRIBUTION CABLES AUTOMOTIVE MICROCONTROLLER SOLAR PROTECTION DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES WEARABLES CAMERA TECHNOLOGY COMMUNICATION GENERATION BATTERIES FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE CONTROL SYSTEM NUCLEAR ENERGY SMATRPHONE FILTER`S POWER BIOGAS BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS ENERGY SOURCE PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD BLUETOOTH C PROGRAMMING HOME AUTOMATION HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY COMPUTER DEFECE & MILITARY FLUORESCENT LAMP INDUSTRIAL ROBOTICS ANDROID ELECTRICAL DRIVES GROUNDING SYSTEM CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS USB ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS CONTROL MOTION ELECTRICAL LAWS INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES APPS & SOFTWARE BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RECTIFIER AND CONVERTERS RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS DC MOTOR DRIVES ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS WIRELESS BUILDING SERVICES COMPRESSOR CRANES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION INDUSTRIAL DRIVES LAPTOP SCIENCE THERMOCOUPLE TRIGONOMENTRY REFERENCE UART oscilloscope BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING ELECTROMECHANICAL FEATURED FILTER DESIGN HARDWARE JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER VALVE COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF