C-BISCUIT Power: 5V 3A Buck Regulator for Wandboard

Design and theory behind a 5V-3A buck regulator based on the LM25575 to be used in the C-BISCUIT robot project.

Introduction

Power overview
Top-level power diagram

The Wandboard in charge of C-BISCUIT requires a regulated 5V DC power supply, generally assumed to be a wall wart with a barrel jack. In order to make the robot mobile, the Wandboard will operate with a 3-cell LiPo battery with a nominal voltage of about 11.1V. It goes without saying that his needs to be regulated to 5V before going to the Wandboard, and since the batteries can source a huge amount of current, it's very wise to include some protection circuitry in case over-voltage / over-current conditions occur (this will be covered in a future tutorial).

This article will present a design of a 5V-3A switch-mode power supply (SMPS) with a buck topology based on the Texas Instruments LM25575 switching regulator. The LM25575 was chosen since in addition to a well-documented datasheet (PDF), TI also provides a reference design (PDF) with example schematic and board layout as well as a design worksheet (PDF) to modify the design for other applications. See the technical documents tab for more resources.

The power supply is a generally much-overlooked aspect of hobbyist projects, so this will hopefully shed some light on what it takes to actually design a custom power solution. There are definitely other options out there, and many may be cheaper and easier to build. Adafruit sells a 5V 3A DC-DC converter for $10, and you can even purchase the full Rev. A LM25575 Reference Design Board for $50, or the unpopulated Rev. B LM25575 Reference Design Board for $20. The goal here is to work through some various aspects of SMPS design so you can create your own down the road.

Rev A
Rev A Reference Design
Rev B
Rev B Reference Design

Theory

Typically, in a hobbyist project, the simplest way of getting a regulated voltage is to use a linear regulator such as an LM7805 (PDF). These are very inefficient, however, and dissipate excess power as heat. Switch-mode power supplies, on the other hand, can operate with very high efficiencies (80% - 95%) but are often more complex circuits and generally require a few more components. Below is a typical schematic of a buck (drop-down) regulator.

Buck topology
Generic buck regulator topology

SMPS's operate on the principle that in an inductor, current can't change instantaneously, and in a capacitor, voltage can't can't change instantaneously. From circuits class, this can be described by the following differential equations:

See dee vee dee tee and Vee dee ell dee tee

When the switch, S (generally a MOSFET of some kind), is closed in the above schematic, current (IL) begins to flow though the inductor, L. This current flows into the capacitor, C, and the load resistor, R, which induces a voltage on them (Vo) that increases from 0V to Vi. This also reverse biases the recirculating diode, D. If S is opened before Vo equals Vi, the current in the circuit doesn't stop instantaneously due to the inductor, so it continues to flow through the loop created with the diode. As the energy of the circuit dissipates, Vo will decrease toward 0V. You can see that if this open/close process is continued, the output voltage can be maintained.

There is inherently some voltage and current ripple in the output but it's possible to get these values well into acceptable levels for most applications. Output characteristics are dependent on the inductance, output capacitance, switching frequency, and even board layout. Most regulator ICs also include some form of closed-loop feedback to maintain a stable output. For more info, here's an interesting article on the Effects of High Switching Frequency on Buck Regulators (PDF).

TI Reference Design

LM25576 Eval Schem

The LM25576 incorporates several "nice to have" features that are included in the reference design.
  • Soft start
  • Over-current limiting (4.2A)
  • Closed loop current mode control (PDF)
  • Shutdown / standby mode (not populated)

The physical layout of the board is provided only as images in the PDF (no Gerber or EDA files) so our layout is recreated manually in KiCad (with some minor modifications). Some important features to note are the copper pours for the recirculating diode and inductor. The pours are on both the top and bottom copper layers, and numerous vias connect them together. This via stitching is done as a form of thermal relief and allows the copper areas to be used as heatsinks when these parts get hot under heavy load conditions. As part of the design, these top pours also have their solder mask omitted so that more heat can be dissipated. There is also via stitching underneath the regulator itself which connects the exposed pad of the IC to the bottom ground plane.

LM25576 Eval Layout

KiCad Implementation

The design we are implementing uses most of the same parts (see the BOM in the reference design PDF), substituting cheaper passives and different input and output terminals. The pads on most of the parts are also slightly larger since this project is designed to be soldered by hand if necessary.


Schematic

Board layout

Pretty 3D rendering in OSHPark purple

Design Files

All the design files are available on Github or as a self-contained ZIP file. Included in the ZIP file are the schematic, layout, and library files for KiCad, as well as the bill of materials and Gerber files for manufacturing.

 

Moving Forward

The next step in the C-BISCUIT power series (in addition to assembly and testing of this board when it gets back from the fab) is a small over-current and over-voltage protection circuit that can be added in-line between the regulator and the Wandboard. In addition, we will be designing a battery power distribution board with hot-swap / shore power capabilities and voltage / current monitoring. For more information on other applications of the buck regulator, check out David Knight's article here.

Until next time, happy hacking...
Previous
Next Post »
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.
Related Posts Plugin for WordPress, Blogger...

Label

KITAIFA NEWS KIMATAIFA MICHEZO BURUDANI SIASA TECHNICAL ARTICLES f HAPA KAZI TU. LEKULE TV EDITORIALS ARTICLES DC DIGITAL ROBOTICS SEMICONDUCTORS MAKALA GENERATOR GALLERY AC EXPERIMENTS MANUFACTURING-ENGINEERING MAGAZETI REFERENCE IOT FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT VIDEO ZANZIBAR YETU TRANSDUCER & SENSOR MITINDO ARDUINO RENEWABLE ENERGY AUTOMOBILE SYNCHRONOUS GENERATOR ELECTRICAL DISTRIBUTION CABLES DIGITAL ELECTRONICS AUTOMOTIVE PROTECTION SOLAR TEARDOWN DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS MICROCONTROLLER CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES CAMERA TECHNOLOGY GENERATION WEARABLES BATTERIES COMMUNICATION FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE NUCLEAR ENERGY CONTROL SYSTEM FILTER`S SMATRPHONE BIOGAS POWER TANZIA BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT cartoon CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP ENERGY SOURCE FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY DEFECE & MILITARY FLUORESCENT LAMP HOME AUTOMATION INDUSTRIAL ROBOTICS ANDROID COMPUTER ELECTRICAL DRIVES GROUNDING SYSTEM BLUETOOTH CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR USB AUDIO BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS ELECTRICAL LAWS HMI[HUMANI INTERFACE MACHINES INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS CONTROL MOTION ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS APPS & SOFTWARE BASIC AC THEORY BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE RECTIFIER AND CONVERTERS SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS BUILDING SERVICES COMPRESSOR CRANES DC MOTOR DRIVES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION LAPTOP THERMOCOUPLE TRIGONOMENTRY REFERENCE UART WIRELESS BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING FILTER DESIGN HARDWARE INDUSTRIAL DRIVES JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER SCIENCE VALVE WWE oscilloscope 3D TECHNOLOGIES COLOR CODES ELECTRIC TRACTION FEATURED FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER MATERIAL PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF