General Features of Gas Discharge Phenomenon in Fluorescent Lamp - LEKULE BLOG


Home Top Ad

Responsive Ads Here

Post Top Ad

Responsive Ads Here

Monday, 22 August 2016

General Features of Gas Discharge Phenomenon in Fluorescent Lamp

When full voltage is applied across the anode and cathode, an electric field is set up from anode to cathode. The flow of the electricity through a gas inside the tube or bulb is called discharge. The electron drifts from cathode to anode and positive ions drifts from anode to cathode.gas discharge phenomenon in fluorescent lamp So the total current can be calculated by summing the ions current and electrons current through the tube.ion current is only 0.01 to 1% of the total current. It is because ions are much heavier than electrons.

Low Pressure Discharge

Inside the lamp tube one or more gases are kept at very low pressure. This pressure is of approximately 100th of 1 Atm pressure. The lamp current is less than 1 amp. So heat produced inside the gas due to gas discharge phenomenon is very less or negligible.

Ionized by Electron Impact

When an electron just gets free to collide a neutral atom three cases may arise.
  1. Electron can rebound with an atom losing small amount of energy only.
  2. The atom can be excited to the higher stage of ionization by realizing own electron.
  3. The atom can be excited only but no ionization.
. Energy of an electron can be expressed in electron volts (eV). 1 eV = energy gained by an electron accelerated through a potential difference of The ionization energy for Hg is 10.4 eV. Ionization energy of argon gas is 15.7 eV. The fluorescent lamp contains Hg-Ar ions. Most of them are Hg ions. They are produced by Hg atom collision with more energetic atoms in the process of discharge.


The electron current is always greater than the ion current. So the most lamps have hot cathode (electrode). Here the cathode has important function of producing electrons to maintain the discharge. But anode plays less important role except accepting the electrons. Cathodes are two types, hot cathode and cold cathode. Hot cathodes are heated either by circulating current that is provided by choke and control gear by bombardment of the positive ions from the neighboring region of the discharge, which is called negative glow. By thermo ionic emission process electrons get available to sustain the discharge. Some special electron emissive material is coated over the electrode. Few lamps have cold cathode that has larger area. Higher voltage should be applied across these electrodes i.e. cold cathodes. This applied voltage may be 1 kV. Gas starts to be discharged due to this high voltage application. Again from 100 to 200 V the cathode glow get separated from the cathode, it is called cathode fall. This provides a large supply of ions which are accelerated to anode to produce secondary electrons on impact which in term produce more ions. But cathode fall in hot cathode discharge is only at 10 V.

Ambipolar Diffusion

When the positive ions drift towards the wall and the electrons towards the electrodes (anode) the neutral atoms are formed due to their recombination. For the fast movement of the electrons towards the wall and the wall acquires small negative potential (few volts) that slow down the faster electrons are participating in continuously discharge process. This kind of charge drift is termed as ambipolar diffusion. It is a cause of energy loss in the discharge process. To achieve this gas discharge phenomenon continuously in a steady state condition the ambipolar diffusion must be lowered. So the anode to cathode electric field must have such a value that electrons acquire just enough energy to maintain their discharge process without any interruption caused by ambipolar diffusion.


There is practically no ionization in the inside gas. Initially a voltage is applied across the tube. So the gas behaves like an insulator. Once a few ions or electrons are presents, a sufficiently high voltage accelerates these ions or electrons to provide more by electron impact ionization. Thus break down is achieved by a cumulative process (avalanche). Suitable electron supply goes on and field emission, photo electric emission or thermo ionic emission continues due to this break down. This greatly reduces the excess voltage and the discharge process is stricken to continue. Except this pre heating cathodes are there to produce electron emission. To provide the electric heat a starting conductor is placed on or near the surface of the electrodes of the lamp. An auxiliary electrode is placed to one of the main electrode to produce a local glow discharge. Again super imposed high voltage pulses are used to assist the breakdown. Radioactive material is used inside the discharge tube to assist the ionization for starting the discharge process. Starting voltage is often reduced by using the penning mixture is place of the single inert gas, a small proportion of another gas is added which has ionization energy slightly lower than the excitation energy of the main gas. Typical examples are 99 % neon gas and 1 % argon are mixed to form this penning mixture to be filled the tube. The excitation energy of neon is 16.5 eV and for argon it is 15.7 eV. For Ar-Hg mixture, Argon has 11.6 eV and Hg has 10.4 eV.

Production of Radiation

Most of the radiations from the majority of the discharge lamp are in form of the uniform positive column. The energetic electrons which produce the ionization also produce the excitation of the gas atoms, which subsequently radiate at their characteristics frequency. At the low pressure, these are usually to produce discrete line spectra normally many energy levels are exited. The lowest excited state which can produce resonance radiation is always maintained. It is very efficient, in case of Hg, ultra violate ray radiation at 253 nm is the principle rays of radiation. For exciting phosphor on the wall of the fluorescent lamp Hg has also another resonance line at 185 nm but this is of less important. In case of Na, the resonance radiation is at 2.1 eV in the yellow region 589.3 nm. Near this wavelength maximum visual response we get. Certain states for Hg are 4.6 eV and 5.46 eV cannot radiate any visible spectra. These states are called metal stable state.
Post a Comment
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.

Post Bottom Ad

Responsive Ads Here