MIT Deep Learning Algorithm Passes an Important First Test

MIT has developed a deep learning algorithm that has successfully passed the Turing Test for sound.

The Turing Test

The Turing Test was designed by Alan Turing as a way of measuring how good a machine is at imitating human behavior. Passing the test means that the difference between a machine and human is imperceptible.


A depiction of the classic Turing Test wherein a tester (C) is asked to determine whether A or B is human or machine. Image courtesy of Wikimedia.

In popular culture, the Turing Test is often portrayed as a computer attempting to seem as human as possible to the point where humans mistake it as one of their own.
However, this is only one application of the Turing Test, which has different types. For instance, some machines can mimic human sounds while other can visually compete with what a human can do— which is a large step toward autonomous vehicles.

MIT's Deep Learning Algorithm

MIT developed a deep learning algorithm capable of assessing physical interactions in videos and the sounds resulting from those interactions. The algorithm was trained over several months using over 1,000 videos with 46,000 sounds of objects being hit, scratched, or poked with a drumstick. The drumstick was used because it provided a consistent sound when hitting each object.
The algorithm was then fed muted video clips of a drumstick hitting various objects and instructed to produce sound effects appropriate for each video.
To accomplish this, the algorithm uses a parametric inversion to create the sounds rather than searching through a library of sounds to find the correct match for the video it sees. Once the algorithm has created a reasonable sound profile (or cochleagram), it finds a good match in the database and that is the output it provides.


Image courtesy of MIT CSAIL. Click to enlarge.

The dataset that was used, called The Greatest Hits, is now publicly available to others who may want to use it in their own experiments. The sounds are preprocessed by applying bandpass filters and creating an envelope for a simple representation of the filtered waveform. A representation is found for each frame and each frame is subsequently mapped to sound features.
The end result is that the sounds produced by the algorithm are almost identical to the sounds that would be produced by the natural interactions—and humans can’t tell the difference.

Testing

The MIT team used an online study to test how well the deep learning algorithm actually performs.
Testers were shown two videos of physical interactions: one with the actual sound and one with algorithm-produced sound. They were then asked to choose which sound was the "real", or authentic, soundtrack for each video.
The results of the study were that people chose the fake sound twice as often as the real sound. When MIT compared their algorithm to other similar algorithms, they found that it outperformed the best image matching method and baseline sound.
The algorithm was also tested using an image-based, nearest neighbor approach— specifically, the frame where the impact occurs. The audio was tested using the centered model for the loudness and the spectral centroids. The algorithm was also tested to see if it could determine impact events rather than having the impact centered.

Next Steps

The success of MIT's algorithm has far-reaching effects. One of the most significant takeaways is that the algorithm can accurately determine the properties of a material just by being fed video of it. This is a stride towards autonomous vehicles that can assess the materials around them. Being able to predict the sound can lead to being able to predict the response to interacting with something in the environment.
But the visual Turing Test is just one component of fully passing the Turing Test. There are many more complexities involved in machines trying to replicate human perceptions and actions.
MIT is currently developing an algorithm for passing the visual Turing Test, which is great for the machine learning community and is definitely a step towards having machines understand the consequences of interacting with different environments.

There are still other aspects of the Turing Test, such as having a machine try to replicate how humans would interact with each other, that are yet to be surmounted.
Previous
Next Post »
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.
Related Posts Plugin for WordPress, Blogger...

Label

KITAIFA NEWS KIMATAIFA MICHEZO BURUDANI SIASA TECHNICAL ARTICLES f HAPA KAZI TU. LEKULE TV EDITORIALS ARTICLES DC DIGITAL ROBOTICS SEMICONDUCTORS MAKALA GENERATOR GALLERY AC EXPERIMENTS MANUFACTURING-ENGINEERING MAGAZETI REFERENCE IOT FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT VIDEO ZANZIBAR YETU TRANSDUCER & SENSOR MITINDO ARDUINO RENEWABLE ENERGY AUTOMOBILE SYNCHRONOUS GENERATOR ELECTRICAL DISTRIBUTION CABLES DIGITAL ELECTRONICS AUTOMOTIVE PROTECTION SOLAR TEARDOWN DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS MICROCONTROLLER CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES CAMERA TECHNOLOGY GENERATION WEARABLES BATTERIES COMMUNICATION FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE NUCLEAR ENERGY CONTROL SYSTEM FILTER`S SMATRPHONE BIOGAS POWER TANZIA BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT cartoon CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP ENERGY SOURCE FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD C PROGRAMMING HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY DEFECE & MILITARY FLUORESCENT LAMP HOME AUTOMATION INDUSTRIAL ROBOTICS ANDROID COMPUTER ELECTRICAL DRIVES GROUNDING SYSTEM BLUETOOTH CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR USB AUDIO BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS ELECTRICAL LAWS HMI[HUMANI INTERFACE MACHINES INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS CONTROL MOTION ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS APPS & SOFTWARE BASIC AC THEORY BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE RECTIFIER AND CONVERTERS SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS BUILDING SERVICES COMPRESSOR CRANES DC MOTOR DRIVES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION LAPTOP THERMOCOUPLE TRIGONOMENTRY REFERENCE UART WIRELESS BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING FILTER DESIGN HARDWARE INDUSTRIAL DRIVES JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER SCIENCE VALVE WWE oscilloscope 3D TECHNOLOGIES COLOR CODES ELECTRIC TRACTION FEATURED FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER MATERIAL PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF