Hello

Welcome lekule blog

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation.
together in the world. #lekule86
Join us on

4 Key Technologies to Watch at Embedded World 2016

Embedded World 2016 is almost here. Here are some technologies to keep your eye on.
Autonomous cars are the future of automotive electronics, but they are years away from mainstream commercial realization. What we have right now is the advanced driver assistance systems or ADAS, and the Embedded World 2016 show in Nuremberg, Germany will provide a glimpse of where ADAS products and technologies stand regarding commercial realization.
ADAS is technology to watch in 2016

The ADAS technology is driving the demand for chips from automotive OEMs and Tier 1 suppliers as well as from after-market manufacturers. Not surprisingly, therefore, chip firms ranging from Altera to Cadence and Cypress to Imagination Technologies are unveiling they ADAS offerings during the Embedded World 2016 show being held on 23-25 February. Below are the four key technology ingredients that will likely drive the growth of ADAS products and thus will be worth watching during the Embedded World 2016.

Computer Vision

The smart camera is clearly the brain of the ADAS, and once it's combined with powerful computer vision algorithms, ADAS enables vehicles to look outside to monitor road conditions and look inside to monitor driver behavior.
The advanced computer vision algorithms are a driving force in the next-generation ADAS offerings. And that calls for low-power vision chips that can process a vast array of visual information while monitoring roadway objects such as pedestrians and animals.

Freescale (now part of NXP) bought Cognivue to acquire computer vision IP

The rising number of cameras inside and outside the car is a testament that computer vision technology will be a key influence on ADAS in 2016. Now add artificial intelligence and deep learning algorithms to the computer-vision recipe and that may lead to groundbreaking ADAS product developments during this year.

Automotive Radars

Apparently, cameras are going to play a central role in driver assistance systems, but they are hindered during the night time and in situations like fog, snow, and rain. So it's quite likely that the automotive industry won't rely on just one sensor technology to enable the ADAS. Enter Light Detection And Ranging technology or LiDAR.
Radar is the other major sensor after camera in ADAS products; it can see through darkness and fog, and it can also measure the speed and distance of objects. Moreover, LiDAR systems provide higher resolution and more granular details of the objects. According to Frost & Sullivan, seven out of 13 top automotive OEMs are incorporating the LiDAR technology in their vehicles.


NXP's small CMOS radar chip aims to replace traditional ultrasonic solutions

However, LiDAR systems are still at a nascent stage with a modest resolution and limited range. The current LiDAR products are relatively expensive, and they can scan up to 100 meters with limited reflectivity. Furthermore, they come in larger packages made up of two to three SiGe chips.
NXP has showcased a single-chip CMOS solution for short-range automotive radars at the CES 2016. NXP claims that its 77 GHz RF transceiver chip consumes 40 percent less power than conventional radar ICs and that it will help car OEMs replace bulky ultrasonic radars with lightweight and high-resolution sensors.

ASIL Certification

The connected car standards like ADAS are all about functional safety, so the ISO 26262 specification incorporates stringent reliability features in automotive chips. These powerful chips will require greater processing power in order to accomplish the computational consolidation that is the hallmark of technologies like the ADAS.

TI's TDA3x ADAS chip complies with the ISO 26262 functional safety standard

Not surprisingly, therefore, the Automotive Safety Integrity Level (ASIL) certification defined in the ISO 26262 Functional Safety for Road Vehicles standard has become a major priority for ADAS solution providers. Take CEVA, the supplier XM4 vision processor IP, which has recently received the ASIL B certification.

Sensor Fusion

An ADAS product usually comprises of one or more cameras, GPS, an inertial sensor, a processor and a communications modem. The processor powers computer vision, artificial intelligence and deep learning algorithms to enable contextually aware speech and image recognition for ADAS warning systems.

Sensor fusion is crucial amid the rising number of sensors in ADAS (Image: TI)

A driver assistance system is more than the camera and radar sensors. A cocoon of sensors is required to enable ADAS features such as 360-degree view and automated parking. An inertial sensor, for example, monitors vehicle's speed and acceleration. Then, there are proximity and light detection sensors.

A robust sensor fusion is crucial for ensuring that a lot of data from cameras, radars and other sensors is accurately gathered in real-time. The data from different sensors is usually driven to a central place—sensor hub—that offloads the central processor from the sensor number crunching. Here, accuracy and power consumption are main challenges for smart fusion of a heterogeneous sensors world.

Share this:

ABOUTME

Hi all. This is deepak from Bthemez. We're providing content for Bold site and we’ve been in internet, social media and affiliate for too long time and its my profession. We are web designer & developer living India! What can I say, we are the best..

Post a Comment
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.

Labels

LEKULE TV EDITORIALS ARTICLES DC ROBOTICS DIGITAL SEMICONDUCTORS GENERATOR AC EXPERIMENTS MANUFACTURING-ENGINEERING REFERENCE FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT TRANSDUCER & SENSOR VIDEO ARDUINO RENEWABLE ENERGY AUTOMOBILE TEARDOWN SYNCHRONOUS GENERATOR DIGITAL ELECTRONICS ELECTRICAL DISTRIBUTION CABLES AUTOMOTIVE MICROCONTROLLER SOLAR PROTECTION DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES WEARABLES CAMERA TECHNOLOGY COMMUNICATION GENERATION BATTERIES FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE CONTROL SYSTEM NUCLEAR ENERGY SMATRPHONE FILTER`S POWER BIOGAS BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS ENERGY SOURCE PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD BLUETOOTH C PROGRAMMING HOME AUTOMATION HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY COMPUTER DEFECE & MILITARY FLUORESCENT LAMP INDUSTRIAL ROBOTICS ANDROID ELECTRICAL DRIVES GROUNDING SYSTEM CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS USB ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS CONTROL MOTION ELECTRICAL LAWS INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES APPS & SOFTWARE BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RECTIFIER AND CONVERTERS RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS DC MOTOR DRIVES ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS WIRELESS BUILDING SERVICES COMPRESSOR CRANES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION INDUSTRIAL DRIVES LAPTOP SCIENCE THERMOCOUPLE TRIGONOMENTRY REFERENCE UART oscilloscope BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING ELECTROMECHANICAL FEATURED FILTER DESIGN HARDWARE JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER VALVE COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF