Hello

Welcome lekule blog

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation.
together in the world. #lekule86
Join us on

ELI the ICE man




ELI the ICE man




In a previous lesson, we covered the fact that two alternating currents can be either in phase, or out of phase with respect to each other. We also discussed the addition of two sine waves of differing phase by using VECTOR ADDITION. I am fairly certain that you were hoping you would never see this again. Sorry, but you were SO wrong. We are soon going to get into the practical applications of vector addition. You are about to learn that in electronics, the capacitor and the inductor are exact opposites. The reason for this is because they BOTH store electricity, but in different ways. In a purely resistive circuit, there is no change in the phase from one component to another. When we add an inductor or capacitor into the circuit, however, the game changes completely, and the rules to the game are written with vectoral math.

Note that if we were to find the resistance of a series circuit with 2 resistors, one having 3 ohms, and the other having 4 ohms, we would simply add them, and come up with 7 ohms. If we were to graph this, we would have a single line along the "X" coordinate which is 7 units long, with points at 0, 3, and 7. If, however, we were to plot the Combined Resistance of a coil ( remember XL ? ) and a resistor we would have to plot a graph like the one above and to the left. This combined resistance is called IMPEDANCE, which is the TOTAL RESISTANCE TO THE FLOW of current. Note that Impedance is the TOTAL resistance to the flow, which includes "pure resistance" (from resistors), capacitive reactance, inductive reactance. The symbol for impedance is Z.

If you have ever studied trigenometry, or even basic geometry, you may recall the formula for finding the hypotenuse of a right triangle ( A2+B2=C2). This will come in handy, as you compare it to the formula for impedance:
R2+XL2=Z2
This can be re-written as


Now let's assume that we have a series circuit like the one shown on the left. Using the formula for IMPEDANCE ( Z ), R2 would be 32 which equals 9. XL2 would be 42 which would be 16. 9+16=25. The square root of 25 = 5, so the impedance of the circuit would be Z=5. Sometimes we might say that the "complex representation" of Z = R+Xj. In this case it would be 3+4j. This comes in handy as we begin adding capacitors into the circuit. Capacitors are like the opposite of inductors in a circuit. Whereas inductors are added ( Z = R + Xj ).... capacitors are subtracted (Z = R - Xj ). I know this all sounds confusing, but it will become clear as mud shortly.

Recall the formula for Inductive Reactance?
XL = 2πfL

How could you forget? Well, CAPACITIVE REACTANCE is its opposite, and should also be memorized. Ready for this one?

        1
XC = ----------------
        2πfC

WOW! It's almost the same formula! The only difference is that we substituted the L's for C's, and we reciprocated the formula (divided 1 by the formula). In the great scheme of things, that makes this formula not too difficult to remember, assuming you did memorize the formula for inductive reactance when I told you to. If you didn't, take time now to memorize both formulas. Your survival in electronics depends on them. Notice that I have flashed lots of formulas by you, but I have only asked you to memorize 3 of them... Ohm's Law, and the formula's for inductive and capacitive reactance. That is because you will use them over, and over again.

Now let us examine our capacitive circuit. Once again, it has a resistance of 3, and a reactance of 4, but this time, it is a capacitive reactance, and not an inductive reactance. We will again use the formula for IMPEDANCE ( Z ), R2 would be 32 which equals 9. XC2 would be 42 which would still be 16. 9+16=25. The square root of 25 = 5, so the impedance of the circuit would once again be Z=5.

    But there is a catch - this time, because the circuit is CAPACITIVE, we would have a complex representation of impedance being equal to 3 - 4j. What exactly does this mean? It means that instead of plotting our graph in the POSITIVE direction along the Y axis of our graph, we would plot it in the NEGATIVE direction. Instead of our plotted point being (3,4) it would be located at (3,-4). I realize, of course, this is a lot of math to remember, but unless you are designing radio frequency, or other resonant circuits, you probably won't be using these formulas on a daily basis. You should be familiar with them though, and you SHOULD memorize the formulas I have pointed out thus far.
One important point to keep in mind, is that when current flows through a purely resistive circuit, the voltage and current arrive at the same point at the same time. In other words, Voltage and Current are in phase in a purely resistive circuit. In a circuit which contains inductance or capacitance though this is not so. In an inductive circuit, the voltage leads the current by 90 degrees (assuming a purely inductive circuit). Likewise, in a capacitive circuit, the current leads the voltage by 90 degrees. Which leads which is easy to remember. Just think "Eli the Ice man".
    E=Voltage I=Current... L=Inductor......C=Capacitor
  • ELI Inductive circuit...... Voltage arrives before Current .
  • ICE Capacitive circuit... Current arrives before Voltage.

Share this:

ABOUTME

Hi all. This is deepak from Bthemez. We're providing content for Bold site and we’ve been in internet, social media and affiliate for too long time and its my profession. We are web designer & developer living India! What can I say, we are the best..

Post a Comment
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.

Labels

LEKULE TV EDITORIALS ARTICLES DC ROBOTICS DIGITAL SEMICONDUCTORS GENERATOR AC EXPERIMENTS MANUFACTURING-ENGINEERING REFERENCE FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT TRANSDUCER & SENSOR VIDEO ARDUINO RENEWABLE ENERGY AUTOMOBILE TEARDOWN SYNCHRONOUS GENERATOR DIGITAL ELECTRONICS ELECTRICAL DISTRIBUTION CABLES AUTOMOTIVE MICROCONTROLLER SOLAR PROTECTION DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES WEARABLES CAMERA TECHNOLOGY COMMUNICATION GENERATION BATTERIES FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE CONTROL SYSTEM NUCLEAR ENERGY SMATRPHONE FILTER`S POWER BIOGAS BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS ENERGY SOURCE PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD BLUETOOTH C PROGRAMMING HOME AUTOMATION HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY COMPUTER DEFECE & MILITARY FLUORESCENT LAMP INDUSTRIAL ROBOTICS ANDROID ELECTRICAL DRIVES GROUNDING SYSTEM CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS USB ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS CONTROL MOTION ELECTRICAL LAWS INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES APPS & SOFTWARE BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RECTIFIER AND CONVERTERS RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS DC MOTOR DRIVES ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS WIRELESS BUILDING SERVICES COMPRESSOR CRANES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION INDUSTRIAL DRIVES LAPTOP SCIENCE THERMOCOUPLE TRIGONOMENTRY REFERENCE UART oscilloscope BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING ELECTROMECHANICAL FEATURED FILTER DESIGN HARDWARE JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER VALVE COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF