Hello

Welcome lekule blog

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation.
together in the world. #lekule86
Join us on

Dangerous Curves


As discussed in the previous lesson, a Characteristic Curve is found by applying several different voltage levels, and measuring plate voltages vs. plate current. We note that in a diode, if we go below a certain plate voltage, ( in this case 0 volts ) no plate current flows. The minimum point at which the tube no longer operates is called the CUTOFF POINT . Above a certain plate voltage, additional plate voltage has very little effect in increasing the plate current. The maximum point where raising the plate voltage no longer increases current is called the SATURATION POINT .

In reality, there are two different factors involved in the control of the amplitude ( or level ) of the plate current that flows in a diode. These are the filament voltage ( sometimes called the heater voltage ), and the plate voltage.

Remember that the cathode must be HEATED into thermionic emission. The temperature of the cathode must be high enough to "boil" the electrons from its surface. It stands to reason, that the higher the temperature we heat the cathode to, the more electrons will be "boiled off". Much like raising the temperature of a pan of water causes it to boil away into steam faster.



ADVANCED CONCEPT

There does come a point though, where we can boil the electrons off no faster. As we raise the voltage on the heater, it will actually begin to slow down the movement of electrons toward the plate, and begin drawing them toward the heater itself. The underlying reason for this is the space charge itself. As the electrons get boiled off, it causes the overall electrical charge of the cloud of electrons to grow.

At some point, the cloud of electrons reaches a high enough negative charge that it repels any new electrons being boiled off, and they return back to the filament - or have to overcome so much of an opposing force from the cloud that they simply never leave it at all. Therefore, when setting up a tube for operation, you want to make sure that you don't set the filament voltage of the tube so high that it will cause this effect, as it will reduce the efficiency, as well as the life expectancy of the tube. Most tubes are operated at standard values of 6 or 12 Volts.

It is typically considered good practice to begin with a new tube somewhat under that (say 5.0 or 5.5 volts assuming a 6 volt tube) and run it that way until the tube gets older and begins to soften. Often, if a tube gets weak and doesn't output its rated power anymore, you can boost, say a 6 Volt filament to run as high as 7.5 or even 8 Volts. This may extend the life of the tube for a while, but you must watch the plate current. If plate current begins to drop off, then you have the filament voltage set too high. For longest life of a tube, the rule of thumb is to run the tube at the lowest filament voltage that will make the current necessary for proper operation of the device. This maximizes the life expectancy of the tube.

Now the question might arise in one's mind, "Why on earth would someone go through all that effort to keep the $10 tube of a guitar amplifier a few more months?" The answer is that they wouldn't. However - If we are talking about a $30,000-$60,000 final output tube of a broadcast transmitter - the picture changes quite a bit. I've taken tubes that were rated to last 5-7 years, and extended their lives to 10-15 years by this method. And if you can squeeze 3 more years out of a $60,000 tube... you've saved the company thousands of dollars. Companies tend to be grateful for that and reward you with a higher paycheck.


END OF ADVANCED CONCEPT



Assuming that the filament voltage of the tube is set, and that we are running our tube into a fixed resistance load, we can increase the plate current by increasing the plate voltage. Normally when plotting (or drawing) an operational curve for a tube, we assume that the filament is held constant, and the plate voltage is raised. As the plate voltage rises, so does the plate current. We do note, however, that there is a minimum and maximum point, at which the curve is no longer linear ( in a straight line ). We call the minimum point the "lower knee" and the maximum point the "upper knee" of the curve. The saturation point occurs at the beginning of the upper knee, while the cut-off point occurs at the beginning of the lower knee. Under normal conditions, we usually operate the tube within the linear portion of the curve.

Later, we will discuss the characteristic curves of various other components. Each type of component has a slightly different curve, which dictates how the component will operate under different conditions. Understanding these curves will give you a more thorough knowledge of how the component works, and insight as to what it will do when it fails. 

Share this:

ABOUTME

Hi all. This is deepak from Bthemez. We're providing content for Bold site and we’ve been in internet, social media and affiliate for too long time and its my profession. We are web designer & developer living India! What can I say, we are the best..

Post a Comment
My photo

Hi, I`m Sostenes, Electrical Technician and PLC`S Programmer.
Everyday I`m exploring the world of Electrical to find better solution for Automation. I believe everyday can become a Electrician with the right learning materials.
My goal with BLOG is to help you learn Electrical.

Labels

LEKULE TV EDITORIALS ARTICLES DC ROBOTICS DIGITAL SEMICONDUCTORS GENERATOR AC EXPERIMENTS MANUFACTURING-ENGINEERING REFERENCE FUNDAMENTAL OF ELECTRICITY ELECTRONICS ELECTRICAL ENGINEER MEASUREMENT TRANSDUCER & SENSOR VIDEO ARDUINO RENEWABLE ENERGY AUTOMOBILE TEARDOWN SYNCHRONOUS GENERATOR DIGITAL ELECTRONICS ELECTRICAL DISTRIBUTION CABLES AUTOMOTIVE MICROCONTROLLER SOLAR PROTECTION DIODE AND CIRCUITS BASIC ELECTRICAL ELECTRONICS MOTOR SWITCHES CIRCUIT BREAKERS CIRCUITS THEORY PANEL BUILDING ELECTRONICS DEVICES MIRACLES SWITCHGEAR ANALOG MOBILE DEVICES WEARABLES CAMERA TECHNOLOGY COMMUNICATION GENERATION BATTERIES FREE CIRCUITS INDUSTRIAL AUTOMATION SPECIAL MACHINES ELECTRICAL SAFETY ENERGY EFFIDIENCY-BUILDING DRONE CONTROL SYSTEM NUCLEAR ENERGY SMATRPHONE FILTER`S POWER BIOGAS BELT CONVEYOR MATERIAL HANDLING RELAY ELECTRICAL INSTRUMENTS ENERGY SOURCE PLC`S TRANSFORMER AC CIRCUITS CIRCUIT SCHEMATIC SYMBOLS DDISCRETE SEMICONDUCTOR CIRCUITS WIND POWER C.B DEVICES DC CIRCUITS DIODES AND RECTIFIERS FUSE SPECIAL TRANSFORMER THERMAL POWER PLANT CELL CHEMISTRY EARTHING SYSTEM ELECTRIC LAMP FUNDAMENTAL OF ELECTRICITY 2 BIPOLAR JUNCTION TRANSISTOR 555 TIMER CIRCUITS AUTOCAD BLUETOOTH C PROGRAMMING HOME AUTOMATION HYDRO POWER LOGIC GATES OPERATIONAL AMPLIFIER`S SOLID-STATE DEVICE THEORRY COMPUTER DEFECE & MILITARY FLUORESCENT LAMP INDUSTRIAL ROBOTICS ANDROID ELECTRICAL DRIVES GROUNDING SYSTEM CALCULUS REFERENCE DC METERING CIRCUITS DC NETWORK ANALYSIS ELECTRICAL SAFETY TIPS ELECTRICIAN SCHOOL ELECTRON TUBES FUNDAMENTAL OF ELECTRICITY 1 INDUCTION MACHINES INSULATIONS USB ALGEBRA REFERENCE HMI[Human Interface Machines] INDUCTION MOTOR KARNAUGH MAPPING USEUL EQUIATIONS AND CONVERSION FACTOR ANALOG INTEGRATED CIRCUITS BASIC CONCEPTS AND TEST EQUIPMENTS DIGITAL COMMUNICATION DIGITAL-ANALOG CONVERSION ELECTRICAL SOFTWARE GAS TURBINE ILLUMINATION OHM`S LAW POWER ELECTRONICS THYRISTOR BOOLEAN ALGEBRA DIGITAL INTEGRATED CIRCUITS FUNDAMENTAL OF ELECTRICITY 3 PHYSICS OF CONDUCTORS AND INSULATORS SPECIAL MOTOR STEAM POWER PLANTS TESTING TRANSMISION LINE C-BISCUIT CAPACITORS COMBINATION LOGIC FUNCTION COMPLEX NUMBERS CONTROL MOTION ELECTRICAL LAWS INVERTER LADDER DIAGRAM MULTIVIBRATORS RC AND L/R TIME CONSTANTS SCADA SERIES AND PARALLEL CIRCUITS USING THE SPICE CIRCUIT SIMULATION PROGRAM AMPLIFIERS AND ACTIVE DEVICES APPS & SOFTWARE BASIC CONCEPTS OF ELECTRICITY CONDUCTOR AND INSULATORS TABLES CONDUITS FITTING AND SUPPORTS ELECTRICAL INSTRUMENTATION SIGNALS ELECTRICAL TOOLS INDUCTORS LiDAR MAGNETISM AND ELECTROMAGNETISM PLYPHASE AC CIRCUITS RECLOSER SAFE LIVING WITH GAS AND LPG SAFETY CLOTHING STEPPER MOTOR SYNCHRONOUS MOTOR AC METRING CIRCUITS BECOME AN ELECTRICIAN BINARY ARITHMETIC BUSHING DIGITAL STORAGE MEMROY ELECTRICIAN JOBS HEAT ENGINES HOME THEATER INPECTIONS LIGHT SABER MOSFET NUMERATION SYSTEM POWER FACTORS REACTANCE AND IMPEDANCE INDUCTIVE RECTIFIER AND CONVERTERS RESONANCE SCIENTIFIC NOTATION AND METRIC PREFIXES SULFURIC ACID TROUBLESHOOTING TROUBLESHOOTING-THEORY & PRACTICE 12C BUS APPLE BATTERIES AND POWER SYSTEMS DC MOTOR DRIVES ELECTROMECHANICAL RELAYS ENERGY EFFICIENCY-LIGHT INDUSTRIAL SAFETY EQUIPMENTS MEGGER MXED-FREQUENCY AC SIGNALS PRINCIPLE OF DIGITAL COMPUTING QUESTIONS REACTANCE AND IMPEDANCE-CAPATIVE SEQUENTIAL CIRCUITS SERRIES-PARALLEL COMBINATION CIRCUITS SHIFT REGISTERS WIRELESS BUILDING SERVICES COMPRESSOR CRANES DIVIDER CIRCUIT AND KIRCHHOFF`S LAW ELECTRICAL DISTRIBUTION EQUIPMENTS 1 ELECTRICAL DISTRIBUTION EQUIPMENTS B ELECTRICAL TOOL KIT ELECTRICIAN JOB DESCRIPTION INDUSTRIAL DRIVES LAPTOP SCIENCE THERMOCOUPLE TRIGONOMENTRY REFERENCE UART oscilloscope BIOMASS CONTACTOR ELECTRIC ILLUMINATION ELECTRICAL SAFETY TRAINING ELECTROMECHANICAL FEATURED FILTER DESIGN HARDWARE JUNCTION FIELD-EFFECT TRANSISTORS NASA NUCLEAR POWER VALVE COLOR CODES ELECTRIC TRACTION FLEXIBLE ELECTRONICS FLUKE GEARMOTORS INTRODUCTION LASSER PID PUMP SEAL ELECTRICIAN CAREER ELECTRICITY SUPPLY AND DISTRIBUTION MUSIC NEUTRAL PERIODIC TABLES OF THE ELEMENTS POLYPHASE AC CIRCUITS PROJECTS REATORS SATELLITE STAR DELTA VIBRATION WATERPROOF